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Reynolds experiment
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Reynolds, Phil. Trans. R. Soc. London, 174 (1884)



Plane Couette flow

Navier-Stokes equation:

U+ (u-Vu=-Vp+ Rlevzu
Incompressibility condition: V-u =0
Streamwise and spanwise directions: periodic BCs

Wall-normal direction: no-slip BCs

“|y=1 :(15070) y

T U = (4,0,0)

X

uly——1 = (-1,0,0) —



Subcritical transitional flows

Linearly stable laminar state  Sustained turbulence

Plane Couette flow all Re Re > 325
Pipe flow all Re Re Z 2040
Plane Poiseuille flow Re <5772 Re = 840

Transition is complicated by the coexistence of two attractive states:
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Edge of chaos

Edge of chaos is wrapped up around the turbulent saddle’
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Edge tracking

Edge tracking allows to compute edge states \.
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Transition and control in a small
domain



Edge states in plane Couette flow

Edge states are equilibria in small domains:?
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Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed).
Bottom plot: edge trajectory represented via xy-averaged kinetic energy.

2Schneider et al., Phys. Rev. E, 76, 016301 (2007)



How robust is the laminar state to perturbations?

Indicators of stability:

- Infinitesimal perturbations = linear growth rate
- Finite-amplitude perturbations = the size of the basin of attraction

Minimal
seed

Edge of chaos

Laminarisation probability Pium(E) is the probability
that a random finite perturbation of energy E laminarises

Random perturbation: !
u=Au, + BUgm,
where A, B,u, are generated randomly and (u, Ugm) =0 |



Laminarisation probability

- Pum(E) approximates the size of the basin of attraction
- Laminarisation probability fitting: p(E) =1— (1 — a)y(«, BE)
- Control strategies can be assessed by comparing Pigm(E)
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Left: laminarisation probability for perturbations with energies between 0 and 2E,qge
Right: random perturbations classified as laminarising (black) and transitioning (yellow)



Control strategy: wall oscillations

We impose in-phase oscillations on the walls®:
u(x,£1,z,t) = tex + Asin(wt)e;
= Uiam = yex + W(y, t)e,.

3Motivated by Rabin et al,, ). Fluid Mech. 738 (2014)



Edge state for wall-oscillated flow

- Consider A= 0.3 and w = 1/16 = the edge state is chaotic
- The average E.qqe is decreased by approximately 37%
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Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed).
Bottom plot: edge trajectory represented via xy-averaged kinetic energy. 10



Laminarisation probability for wall-oscillated flow

- Pum is significantly increased compared to the uncontrolled case
- Relative probability increase:
"2Eedge —
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2Eedge Jo p(E)
Laminarising perturbations are spread all over the space (A, |[|Uiam||B)
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Left: laminarisation probability for perturbations with energies between 0 and 2E,4ge
Right: random perturbations classified as laminarising (black) and transitioning (yellow)
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Optimal control with respect to laminarisation probability

- Wish to find A and w maximising the laminarisation probability
- Use only a small number of random perturbations
- Employ Bayesian estimation to quantify the uncertainty
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Transition to turbulence in a wide
domain




Localised edge states

(a) 63.77 x 2 x 15.97 domain®*:

(b) 647 x 2 x 167 domain®:
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“Duguet et al.,, Phys. Fluids, 21, 111701 (2009)
>Schneider, et al,, ). Fluid Mech., 646 (2010)



Snaking in plane Couette flow (47 x 2 x 327)

- First observed by Schneider et al. in 2010°

- Homoclinic snaking is most studied for the Swift-Hohenberg equation’
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6Schneider et al,, Phys. Rev. Lett., 104 (2010)
’Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015)
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pinning

- Depinning is the process of expansion/collapse of the initial spatial
pattern outside the snaking by nucleation/annihilation of cells

- Square-root law of the speed of fronts: ¢ o |Re — Res|"/?
- Depinning in plane Couette flow was witnessed by Duguet et al.®
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Relaminarisation times for localised states
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Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW



Relaminarisation times for localised states

R3 p
A
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Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW



Region R1 - peaks (S5)
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- Peaks: Re, 1 — Res = a(Re, — Res)
- Local minima: t, =ty + fn
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Region R2 - splitting

- Region R2 appears due to the creation and activation of spots
- The spot size is the same for all considered initial conditions
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Relaminarisation times for S13 integrated for Re € [185; 230].
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Region R3 - chaotic transients

- Like R2, R3 originates from the splitting of the initial spot
- Unlike R2, R3 contains long-lasting chaotic transients (T > 4000)
- Decay of roll clusters overwhelms front propagation
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Relaminarisation times for S9 integrated for Re € [244; 254]. 20



Region R4 — transition to turbulence

- Front propagation overwhelms decay of roll clusters
- Average front speed (c) = 0.02 does not depend on Re for Re < 350
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Control of transition in a wide
domain




Homotopy from the uncontrolled system for S5

- Control strategies can be assessed by comparing treiam
- Consider in-phase wall oscillations with w = 1/16

- Fast relaminarization for A ~ 0(10~")

- Original regions are recovered for A <1072
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Homotopy from the uncontrolled system for S13

- Fast relaminarization for A ~ O(10~")
- Original regions are recovered for A <1073
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Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases. 23



The onset of transition to turbulence

- For amplitudes A > 107", the only existing region is R&4
- Increasing A delays the onset of R4
- Frequency w = 1/8 is the most efficient in delaying the onset

Reer

Critical Reynolds number as a function of the amplitude A and the frequency w of the

wall oscillation. Solid lines correspond to S5 and dashed lines correspond to S13. 24



ges of transition

Wall oscillations favour directed-percolation-like transition °1°:
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9Sipos and Goldenfeld, Phys. Rev. E 84, 035304 (2011)
OChantry et al., J. Fluid Mech. 824, R1(2017) 25



Laminarisation probability:

- Helps analyse finite-amplitude instabilities
- Approximates the size of the basin of attraction
- Allows to quantify and compare the efficiency of control strategies

- Minimal seeds and edge states may be misleading while designing control

Pershin, Beaume and Tobias, J. Fluid Mech. 895, A16 (2020)

Transition in a wide domain:

- Exact solutions are reproducible initial conditions
- Characterise transitional dynamics via relaminarisation times

- Exact solutions + relaminarisation times = framework
— Assessment of control strategies

Pershin, Beaume and Tobias, J. Fluid Mech. 867, 414-437 (2019)
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