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Reynolds experiment

Reynolds, Phil. Trans. R. Soc. London, 174 (1884)
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Plane Couette flow

Navier–Stokes equation:

∂tu+ (u · ∇)u = −∇p+
1
Re

∇2u

Incompressibility condition: ∇ · u = 0

Streamwise and spanwise directions: periodic BCs

Wall-normal direction: no-slip BCs

x

y

Ulam = (y, 0, 0)

u|y=1 = (1, 0, 0)

u|y=−1 = (−1, 0, 0)
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Subcritical transitional flows

Linearly stable laminar state Sustained turbulence
Plane Couette flow all Re Re & 325
Pipe flow all Re Re & 2040
Plane Poiseuille flow Re . 5772 Re & 840

Transition is complicated by the coexistence of two attractive states:
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Edge of chaos

Edge of chaos is wrapped up around the turbulent saddle1

Laminar state

Minimal seed
Edge state

1Chantry et al., J. Fluid Mech. 747 (2014) 4



Edge tracking

Edge tracking allows to compute edge states

t

E

T1 T2 > T1 + Tdiff T3 > T2 + Tdiff

Eturb − Elam < Ediff
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Transition and control in a small
domain



Edge states in plane Couette flow

Edge states are equilibria in small domains:2

Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed).
Bottom plot: edge trajectory represented via xy-averaged kinetic energy.

2Schneider et al., Phys. Rev. E, 76, 016301 (2007)
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How robust is the laminar state to perturbations?

Indicators of stability:

• Infinitesimal perturbations =⇒ linear growth rate
• Finite-amplitude perturbations =⇒ the size of the basin of attraction

Minimal
seed

Edge
state

Edge of chaos

Laminarisation probability Plam(E) is the probability
that a random finite perturbation of energy E laminarises

Random perturbation:
u = Au⊥ + BUlam,

where A,B,u⊥ are generated randomly and 〈u⊥,Ulam〉 = 0
7



Laminarisation probability

• Plam(E) approximates the size of the basin of attraction
• Laminarisation probability fitting: p(E) = 1− (1− a)γ(α, βE)
• Control strategies can be assessed by comparing Plam(E)
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Left: laminarisation probability for perturbations with energies between 0 and 2Eedge
Right: random perturbations classified as laminarising (black) and transitioning (yellow)
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Control strategy: wall oscillations

We impose in-phase oscillations on the walls3:

u(x,±1, z, t) = ±ex + Asin(ωt)ez
=⇒ Ulam = yex +W(y, t)ez.

(a) t = 0:
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π
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3Motivated by Rabin et al., J. Fluid Mech. 738 (2014)
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Edge state for wall-oscillated flow

• Consider A = 0.3 and ω = 1/16 =⇒ the edge state is chaotic
• The average Eedge is decreased by approximately 37%

Top plot: initial trajectories (gray), following iterations (color) and edge trajectory (dashed).
Bottom plot: edge trajectory represented via xy-averaged kinetic energy. 10



Laminarisation probability for wall-oscillated flow

• Plam is significantly increased compared to the uncontrolled case
• Relative probability increase:

1
2Eedge

∫ 2Eedge

0

posc(E)− p(E)
p(E) dE ≈ 1.8

• Laminarising perturbations are spread all over the space (A, ||Ulam||B)
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Left: laminarisation probability for perturbations with energies between 0 and 2Eedge
Right: random perturbations classified as laminarising (black) and transitioning (yellow) 11



Optimal control with respect to laminarisation probability

• Wish to find A and ω maximising the laminarisation probability
• Use only a small number of random perturbations
• Employ Bayesian estimation to quantify the uncertainty
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Transition to turbulence in a wide
domain



Localised edge states

(a) 63.7π × 2× 15.9π domain4 :

(b) 64π × 2× 16π domain5 :

(c) 4π × 2× 8π domain5 :

4Duguet et al., Phys. Fluids, 21, 111701 (2009)
5Schneider, et al., J. Fluid Mech., 646 (2010)
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Snaking in plane Couette flow (4π × 2× 32π)

• First observed by Schneider et al. in 20106

• Homoclinic snaking is most studied for the Swift–Hohenberg equation7

6Schneider et al., Phys. Rev. Lett., 104 (2010)
7Knobloch, Annu. Rev. Condens. Matter Phys., 6 (2015)
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Depinning

• Depinning is the process of expansion/collapse of the initial spatial
pattern outside the snaking by nucleation/annihilation of cells

• Square-root law of the speed of fronts: c ∝ |Re− Res|1/2

• Depinning in plane Couette flow was witnessed by Duguet et al.8

8Duguet et al., Phys. Rev. E, 84 (2011)
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Relaminarisation times for localised states

Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW
16



Relaminarisation times for localised states

R1

R2 R3

P

P P

R3a

R4

Relaminarisation times for EQ (blue) and TW (red) saddle-node states. Midplane of
streamwise velocity of EQ saddle-node states is shown on the left.

No major difference between the dynamics of EQ and TW
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Region R1 – peaks (S5)

• Peaks: Ren+1 − Res = α (Ren − Res)
• Local minima: tn = t0 + βn

=⇒ trelam =
β

lnα
ln

[
2 (Re− Res)

(1+ α) (Re0 − Res)

]
+ t0

18



Region R2 – splitting

• Region R2 appears due to the creation and activation of spots
• The spot size is the same for all considered initial conditions

Relaminarisation times for S13 integrated for Re ∈ [185; 230].
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Region R3 – chaotic transients

• Like R2, R3 originates from the splitting of the initial spot
• Unlike R2, R3 contains long-lasting chaotic transients (T > 4000)

• Decay of roll clusters overwhelms front propagation

Relaminarisation times for S9 integrated for Re ∈ [244; 254]. 20



Region R4 – transition to turbulence

• Front propagation overwhelms decay of roll clusters
• Average front speed 〈c〉 = 0.02 does not depend on Re for Re < 350

Relaminarisation times for S7 integrated for Re ∈ [270; 350) and cut at trelam = 6000. 21



Control of transition in a wide
domain



Homotopy from the uncontrolled system for S5

• Control strategies can be assessed by comparing trelam
• Consider in-phase wall oscillations with ω = 1/16

• Fast relaminarization for A ∼ O(10−1)

• Original regions are recovered for A . 10−2

22



Homotopy from the uncontrolled system for S13

• Fast relaminarization for A ∼ O(10−1)
• Original regions are recovered for A . 10−3

Relaminarisation times for the uncontrolled (blue) and wall-oscillated (orange) cases. 23



The onset of transition to turbulence

• For amplitudes A & 10−1, the only existing region is R4
• Increasing A delays the onset of R4
• Frequency ω = 1/8 is the most efficient in delaying the onset
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Critical Reynolds number as a function of the amplitude A and the frequency ω of the
wall oscillation. Solid lines correspond to S5 and dashed lines correspond to S13.

What amplitude and frequency are optimal?
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Stages of transition

Wall oscillations favour directed-percolation-like transition 9,10:

9Sipos and Goldenfeld, Phys. Rev. E 84, 035304 (2011)
10Chantry et al., J. Fluid Mech. 824, R1 (2017) 25



Conclusion

Laminarisation probability:

• Helps analyse finite-amplitude instabilities

• Approximates the size of the basin of attraction

• Allows to quantify and compare the efficiency of control strategies

• Minimal seeds and edge states may be misleading while designing control

Pershin, Beaume and Tobias, J. Fluid Mech. 895, A16 (2020)

Transition in a wide domain:

• Exact solutions are reproducible initial conditions

• Characterise transitional dynamics via relaminarisation times

• Exact solutions + relaminarisation times = framework
=⇒ Assessment of control strategies

Pershin, Beaume and Tobias, J. Fluid Mech. 867, 414–437 (2019)
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