Relaminarization of spatially localized states

_ in plane Couette flow
M A. Pershin, C. Beaume, S. Tobias UNIVERSITY OF LEEDS

Engineering and Physical Sciences
Research Council

Exact localized states in plane Couette flow

Plane Couette flow is a three-dimensional flow confined between two parallel walls moving

In opposite directions and is known to possess a linearly stable laminar state for all 2.6 . ; ; ; ; —
eynolds numbers. Transition to turbulence oceurs through finite-amplitude perturbations 5 S SN SRS
the most dangerous of which often spatially localized (Pringle et al., Phys. Fluids 27, Lo Mac e |

064102 (2015)). Exact spatially localized solutions found in plane Couette flow on two T S e

intertwined branches in a phenomenon known as snaking (Schneider et al., Phys. Rev. N

Lett. 104, 104501 (2010)) have recently been shown to be related to optimal perturbations o |

with respect to the transient energy growth (Olvera et al., Phys. Rev. Fluids 2, 083902 ST T

(2017)). In this study, we use them as initial conditions for time-integration for a range of
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Reynolds numbers up to Re = 350 and investigate their dynamics. | | _— :
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z Fig. 2: Bifurcation diagram of the snaking described by the localized equilibria (EQ,
L blue line) and travelling waves (TW, red line) of plane Couette flow. The saddle-nodes
Lx of both branches are labelled Si, where i is the number of rolls the saddle-node state

Fig. 1: Sketch of the plane Couette flow configuration and its laminar solution. consists of. The spatially periodic Nagata solutions are represented in dash lines.
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Fig. 3: Relaminarisation times t,o5m for EQ (blue) and TW (pink) initial conditions for
Re € [180; 320]. The curves have been shifted according to the spanwise width of the
initial condition.

Fig. 4: Map of the parameter space (Re, Si). The regions of non-trivial dynamics
labelled R1, R2, R3, R3a and R4 are separated by plateaux (P) of relatively low
relaminarisation times. Characteristic relaminarisation times are denoted by f.

Region R1 — peaks Region R2 - splitting

e Peaks: Re,.1 — Res = a(Re, — Reg) et = n { 2 (Re — Res) s e The initial state splits into two spots that start oscillating
e Local minima: t, = ty + 8n relam = In a |(1+ «a)(Rey — Res) e At the boundaries of R2, spots have the same width after splitting for different Si
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Fig. 5: Relaminarisation times t.3m In R1 for initial condition S5. Fig. 6: Relaminarisation times t,o5m IN R2 for initial condition S13.

Region R3 - long-lived chaos Region R3 — simulation at Re = 248.5

e Spot dynamics may result in long-lasting simulations: t,53m > 1000
e The relaminarisation time is sensitive to changes in Re
B B B R - t
E Fig. 8: Spatiotemporal evolution of the streamwise- and wall-normal-averaged kinetic
| | | energy at Re = 248.5 for initial condition S9 (black dot in figure 7).
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Fig. 7: Relaminarisation times t,¢zm in R3 for initial condition S9. The majority of simulations are long-lasting with t;gam > 1000.
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