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Reynolds experiment
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Plane Couette flow

Navier–Stokes equation:

∂tu + (u · ∇)u = −∇p +
1
Re∇

2u

Incompressibility condition: ∇ · u = 0
Streamwise and spanwise directions: periodic BCs
Wall-normal direction: no-slip BCs

x

y

Ulam = (y,0,0)

u|y=1 = (1,0,0)

u|y=−1 = (−1,0,0)
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Subcritical transitional flows

Linearly stable laminar state Sustained turbulence
Plane Couette flow all Re Re & 325
Pipe flow all Re Re & 2040
Plane Poiseuille flow Re . 5772 Re & 840

Transition is complicated by the coexistence of two attractive
states:
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Edge of chaos

Edge of chaos is wrapped up around the turbulent saddle1

1Chantry et al., J. Fluid Mech. 747 (2014) 4 / 26



How robust is the laminar state to perturbations?

Indicators of stability:
I Infinitesimal perturbations =⇒ linear growth rate
I Finite-amplitude perturbations =⇒ the size of the basin of

attraction

Minimal
seed

Edge
state

Edge of chaos

Laminarisation probability Plam(E) is the probability
that a random finite perturbation of energy E laminarises

Random perturbation:
u = Au⊥ + BUlam,

where A,B, u⊥ are generated randomly and 〈u⊥,Ulam〉 = 0
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Laminarisation probability

I Plam(E) approximates the size of the basin of attraction
I Laminarisation probability fitting: p(E) = 1− (1− a)γ(α, βE)

I Control strategies can be assessed by comparing Plam(E)
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Control strategy: wall oscillations
We impose in-phase oscillations on the walls2:

u(x,±1, z, t) = ±ex + Woscsin(ωt)ez

=⇒ Ulam = yex + W(y, t)ez.
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2Motivated by Rabin et al., J. Fluid Mech. 738 (2014) 7 / 26



Bayesian inference of laminarization probability
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Step 1: sampling R for each energy level

assuming the prior distribution fPlam (p)

Step 2: computing posterior distributions

fPlam (p|R = r) =
P(R=r|Plam=p)·fPlam

(p)

P(R=r)

Step 3: computing estimates of

Plam w.r.t. the posteriors
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Laminarization score

I Now we can estimate the laminarization score S:

S =

∫ Emax

0
p(E)fE(E)dE,

I It is assumed that the perturbation energy is distributed as fE(E)

I This is an efficient method for the assessment of laminar flow
robustness for a wide range of control parameter values3

2−5 2−4 2−3 2−2 2−1

ω

0.0

0.2

0.4

0.6

0.8

1.0

S

Uniform energy distribution

2−5 2−4 2−3 2−2 2−1

ω

0.0

0.2

0.4

0.6

0.8

1.0
Exponential energy distribution

Wosc = 0

Wosc = 0.1

Wosc = 0.2

Wosc = 0.3

Wosc = 0.4

Wosc = 0.5

3Pershin, Beaume and Tobias, submitted, arXiv:2108.07629 (2021)
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Learning transition to turbulence via reservoir
computing
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Echo State Network (ESN)
Echo State Network is a reservoir-computing architecture:

r(t + ∆t) = tanh(b + Winu(t) + Wr(t)) + ξZ,
ũ(t +4t) = Woutr(t + ∆t).

where
I Win and W are random sparse matrices
I b is a random bias
I Z is a random variable and ξ is the noise strength
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Training
Minimization of the residual sum of squares (RSS):

min
Wout

Nt∑
k=1
||Woutr(k∆t)− u(k∆t)||22.

Solution for Wout is found via the normal equation.
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Prediction
Prediction mode:

r(t + ∆t) = tanh(b + Winũ(t) + Wr(t)) + ξZ,
ũ(t +4t) = Woutr(t + ∆t).

We still need to specify the initial condition r(T).
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ũ(t +4t) = Woutr(t + ∆t).

We still need to specify the initial condition r(T).

14 / 26



Successful applications

I Low-order dynamical models, Lorenz 63, Lorenz 96
I Kuramoto–Sivashinsky equation
I 2D turbulent Rayleigh–Bénard convection

Pathak et al., Chaos 27, 121102 (2017) 15 / 26



Moehlis–Faisst–Eckhardt model
The model is obtained by
Galerkin projection4:

u(x, t) =
9∑

j=1

aj(t)uj(x).

9-dimensional system of ODEs:

d
dta = f(a;Re, Γx, Γz),

where a(t) = [a1(t), . . . , a9(t)]T .
Parameters:

I Domain wavelengths:
Γx = 1.75π, Γz = 1.2π

I Reynolds number:
Re ∈ [200; 500]

Sustained turbulence:
Re & 320
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Laminarization (Re = 300)

I Turbulence in shear flows is a “leaky” attractor5

I As a result, all trajectories eventually end up with laminarization
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Trajectories used for training

For training, we consider only turbulent trajectories without
laminarization events
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Short-term prediction (Re = 300)

Due to the chaotic nature of the original model, the ESN skill for
short-term prediction is limited
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Long-term prediction (Re = 300)

I ESN is able to “learn” the laminarization dynamics without
experiencing laminarization during the training

I Moreover, ESN is able to replicate the laminar solution
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Lifetime distribution

I ESN can successfully replicate the lifetime statistics
I Its skill may degrade depending on the time series used for

training
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Turbulent-to-laminar transition (Re = 500)

I Ensemble approach can be used to estimate the probability of
turbulent-to-laminar transition

I The probability grows as the initial condition gets closer to the
laminarization event
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Laminar-to-turbulent transition (Re = 500)

I Robustness of the laminar state to finite-amplitude perturbations
is important for assessing laminar-to-turbulent transition

I Laminarization probability is the probability that a random
perturbation decays as a function of its kinetic energy6

I ESN can successfully replicate the laminarization probability
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How can ESN learn laminar dynamics?

I ESN can be expected to embed attractors of the true system by
Echo State Network Approximation Theorem 7

I In practice, it is important to guarantee that the training
timeseries includes excursion close to the laminar state
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Conclusion
Laminarization probability:

I Helps analyse finite-amplitude instabilities
I Approximates the size of the basin of attraction
I Allows to quantify and compare the efficiency of control strategies
I Bayesian inference provides an efficient framework for the laminarization

probability estimation
I Minimal seeds and edge states may be misleading for control design

Pershin, Beaume and Tobias, submitted, arXiv:2108.07629 (2021)
Pershin, Beaume and Tobias, J. Fluid Mech. 895, A16 (2020)

Echo State Networks for transition to turbulence:
I Build a surrogate model of a shear flow
I Able to learn laminar dynamics without seeing it during the training
I Able to approximate key statistics of a transitional flow based only on a

single turbulent trajectory
I Perspective: they can be used for designing optimal control

Pershin, Beaume, Li and Tobias, in preparation (2021)
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Future work

(a) Spatially extended flows?8 (b) Physics-informed ESN?9

(c) Optimal control using reservoir computing?

8Chantry et al., J. Fluid Mech. 791, R8 (2016)
9Pathak et al., Chaos 28, 041101 (2018)
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