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Origins




Machine-learning problem

Wish to learn the functional relationship between
- Given input: u(n) € R
— Desired output: Yiapget (1) € RN

Dataset: {(U(n)a Ytarget (”))}5:1



Time-series prediction

Suppose that n denotes the discrete time.
— Feedforward Neural Networks: (n) = ¢(u(n), u(n — 1),...)
— Recurrent Neural Networks: (n) = ¢(z(n — 1), u(n))
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Time-series prediction

Suppose that n denotes the discrete time.
— Feedforward Neural Networks: (n) = ¢(u(n), u(n — 1),...)
— Recurrent Neural Networks: &(n) = ¢(z(n — 1), u(n))
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Recurrent neural networks (RNN)

Simple form of RNN:
z(n) = f(Winu(n) + We(n - 1)),
y(n) = Wy (n).

where f(-) is usually tanh(-), Wy, € RV M W ¢ RNVNe Wy, € RNwN:,
RNNSs can be viewed as universal approximators of dynamical systems'
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TFunahashi and Nakamura, Neural Networks 6, 801-806 (1993)



Reservoir computing

Reservoir computing denotes the approach where the recurrent part of RNN is
generated/trained separately from the recurrence-free readout.

Reservoir-computing methods:

— Echo State Networks
— Liquid State Machines
— Backpropagation-Decorrelation training

—» Temporal Recurrent Networks
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Echo State Networks




Echo State Network

z(n) = f(Winu(n) + Wa(n — 1)),
y(n) = Wy (n).

where W, and W are random sparse matrices and W, is to be trained.
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Training

Minimisation of the residual sum of squares (RSS):
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Wout

T T
min Y~ [[y(n) = Yrarget (0)]]5 = Iglvinz [ Wowz(n) —u(n+1)[3,
n=1 ot p=1

where 2(n) = f(Wi,u(n) + Wa(n — 1)).
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Training

Solution via the normal equation:

wZ, = (X"x)7"' X7y,

out

where matrices X and Y are given by

- z(1)

- z(2)

x(T)

u(1)

u(2)

u(T)

Here internal states m(n) are obtained via solving the explicit recurrent equation:

z(n) = f(Winu(n) + Wa(n - 1)),

provided an initial condition :1:(0) =0.



Prediction

Generative mode:

z(n) = f(Winy(n — 1) + Wa(n — 1)),
y(n) = Wouz(n).

We still need to specify the initial condition & (0).
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Prediction

Generative mode:

z(n) = f(Winy(n — 1) + Wa(n — 1)),
y(n) = Wouz(n).

We still need to specify the initial condition &(0).
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Prediction

Generative mode:

z(n) = f(Winy(n — 1) + Wa(n — 1)),
y(n) = Wouz(n).

We still need to specify the initial condition & (0).
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Improvements

Echo State Property

This condition is guaranteed when ac = p(W') < 1, so once W is randomly
generated, it needs to be re-scaled:

W.=—-W.
«a

Tikhonov regularisation Noise immunisation

Helps improve stability and overfitting. Helps improve stability and

7 overfitting.
. 2 2
min > [ [Wouw(n) — u(n + 1)} + 5| W
ot =

z(n) = f(Winu(n) + Wa(n - 1)) +£2,
— WL, = (X"X+81) ' X"Y.

where Z ~ uniform(—1,1) and £
is the noise strength.



Leaky integrator neurons

Echo State Networks can be viewed as Euler discretisation of the leaky-integrator-
type ODE:

d
= =2+ f(Wiu+ Wa)

— @(n) =(1-At)z(n —1) + Atf(Wiu(n) + Wa(n — 1)),
where At € [0;1].

Input scaling
Scaling of the input weights W;,, and shifting the input u(n) helps control the
"amount of non-linearity".
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Applications




Lorenz 63 model

Long-term prediction

X Coordinate

X Coordinate

Lyapunov exponents Correlation dimension
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Lorenz 63 model

Long-term prediction Lyapunov exponents Correlation dimension

TABLE 1. Three largest Lyapunov exponents Aj > Ay > A; for the
Lorenz system [Eq. (5)], and for the reservoir set up in the configuration of
Fig. 1(b) for R1 and R2. Since the reservoir system that we employ is a dis-
crete time system, while the Lorenz system is a continuous system, for the
purpose of comparison, A;, Ay, and Ay are taken to be per unit time; that is,
their reservoir values (columns 2 and 3) are equal to the reservoir Lyapunov
exponents calculated on a per iterate basis divided by Ar.

Actual Lorenz system R1 system R2 system
Ay 0.91 0.90 0.01
A 0.00 0.00 0.1
A3 —14.6 -10.5 -99

{Pathak et al., Chaos 27, 121102 (2017)}
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Lorenz 63 model

Long-term prediction

Lyapunov exponents

Correlation dimension
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Kuramoto-Sivashinsky equation

Short-term prediction Failure Improved prediction Lyapunov exponents




Kuramoto-Sivashinsky equation

Short-term prediction Failure Improved prediction Lyapunov exponents

(a) Low Error Knowledge-based Predictor

g(l’,t) - y(xvt)

Time (Amaxt)

{Pathak et al., Chaos 28, 041101 (2018)]
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Kuramoto-Sivashinsky equation

Short-term prediction Failure Improved prediction Lyapunov exponents
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Rayleigh-Bénard convection
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Rayleigh-Bénard convection

Long-term prediction

Snapshots Statistics
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Comparative studies: Lorenz 96

RCvs. ANN vs. LSTM RC vs. GRU vs. LSTM vs. Unit
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Comparative studies: Lorenz 96

RCvs. ANN vs. LSTM

200
175
1.50

4

bR

G
Bo7s

“0.50

025

(a) Reduced order observable (d, = 35), F =

200
175
150

g

A

Boss

0.50

025

7 3
T

i

3 I
Gy

RC vs. GRU vs. LSTM vs. Unit

RC == GRU %
g LSTM =8=; Unit ~+=

] i 7 3 &
T

(b) Full state (d,, = 40), F = 8

(c) Reduced order observable (d, = 35), F = 10

7910.05266 (2019)

'Vlachas et al., arXi
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Comparative studies: K.-S. equation

RMS error Performance
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Comparative studies: K.-S. equation

RMS error Performance
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‘FVIachas et al., arXiv:1910.05266 (2019)



How can we use reservolr
computing?

Building a dynamical system Acceleration of numerical
from observations only simulations

Super-parameterisation Reduced-order modelling



