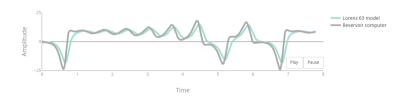
Learning chaotic dynamics via reservoir computing

Anton Pershin^{1, 2} anton.pershin@physics.ox.ac.uk

¹Atmospheric, Oceanic and Planetary Physics, University of Oxford

²School of Mathematics, University of Leeds



Machine Learning Study Group, University of Leeds, Leeds, UK

10 March 2021

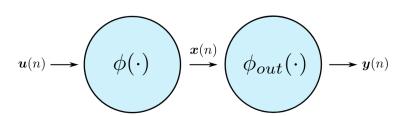
Origins

Machine-learning problem

Wish to learn the functional relationship between

- ightarrow Given input: $oldsymbol{u}(n) \in \mathbb{R}^{N_u}$
- ightarrow Desired output: $oldsymbol{y}_{target}(n) \in \mathbb{R}^{N_y}$

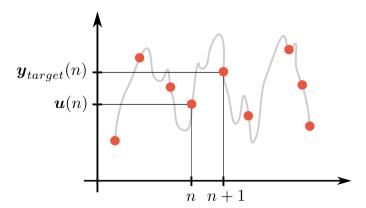
Dataset: $\{(\boldsymbol{u}(n), \boldsymbol{y}_{target}(n))\}_{n=1}^{T}$.



Time-series prediction

Suppose that n denotes the discrete time.

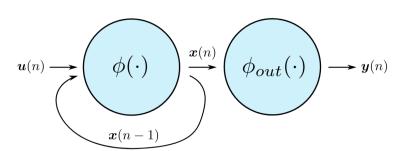
- ightarrow Feedforward Neural Networks: $m{x}(n) = \phi(m{u}(n), m{u}(n-1), \ldots)$
- ightarrow Recurrent Neural Networks: $oldsymbol{x}(n) = \phi(oldsymbol{x}(n-1),oldsymbol{u}(n))$



Time-series prediction

Suppose that n denotes the discrete time.

- ightarrow Feedforward Neural Networks: $m{x}(n) = \phi(m{u}(n), m{u}(n-1), \ldots)$
- ightarrow Recurrent Neural Networks: $m{x}(n) = \phi(m{x}(n-1), m{u}(n))$

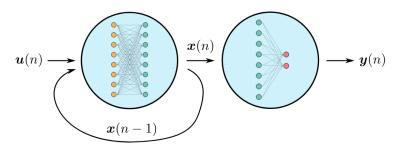


Recurrent neural networks (RNN)

Simple form of RNN:

$$egin{aligned} oldsymbol{x}(n) &= f(oldsymbol{W}_{in}oldsymbol{u}(n) + oldsymbol{W}oldsymbol{x}(n-1)), \ oldsymbol{y}(n) &= oldsymbol{W}_{out}oldsymbol{x}(n). \end{aligned}$$

where $f(\cdot)$ is usually $anh(\cdot)$, $m{W}_{in} \in \mathbb{R}^{N_x \times N_u}$, $m{W} \in \mathbb{R}^{N_x \times N_x}$, $m{W}_{out} \in \mathbb{R}^{N_y \times N_x}$. RNNs can be viewed as universal approximators of dynamical systems 1



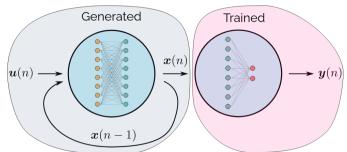
¹Funahashi and Nakamura, Neural Networks **6**, 801–806 (1993)

Reservoir computing

Reservoir computing denotes the approach where the recurrent part of RNN is generated/trained separately from the recurrence-free readout.

Reservoir-computing methods:

- → Echo State Networks
- → Liquid State Machines
- → Backpropagation-Decorrelation training
- → Temporal Recurrent Networks

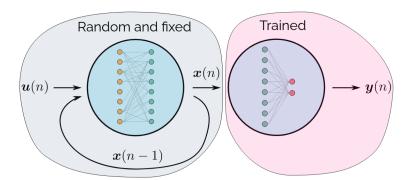


Echo State Networks

Echo State Network

$$egin{aligned} oldsymbol{x}(n) &= f(oldsymbol{W}_{in}oldsymbol{u}(n) + oldsymbol{W}oldsymbol{x}(n-1)), \ oldsymbol{y}(n) &= oldsymbol{W}_{out}oldsymbol{x}(n). \end{aligned}$$

where $oldsymbol{W}_{in}$ and $oldsymbol{W}$ are random sparse matrices and $oldsymbol{W}_{out}$ is to be trained.

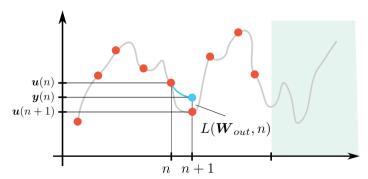


Training

Minimisation of the residual sum of squares (RSS):

$$\min_{oldsymbol{W}_{out}} \sum_{n=1}^{T} ||oldsymbol{y}(n) - oldsymbol{y}_{target}(n)||_2^2 = \min_{oldsymbol{W}_{out}} \sum_{n=1}^{T} ||oldsymbol{W}_{out}oldsymbol{x}(n) - oldsymbol{u}(n+1)||_2^2,$$

where $oldsymbol{x}(n) = f(oldsymbol{W}_{in}oldsymbol{u}(n) + oldsymbol{W}oldsymbol{x}(n-1)).$



Training

Solution via the normal equation:

$$\boldsymbol{W}_{out}^T = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y},$$

where matrices $oldsymbol{X}$ and $oldsymbol{Y}$ are given by

Here internal states $\boldsymbol{x}(n)$ are obtained via solving the explicit recurrent equation:

$$\boldsymbol{x}(n) = f(\boldsymbol{W}_{in}\boldsymbol{u}(n) + \boldsymbol{W}\boldsymbol{x}(n-1)),$$

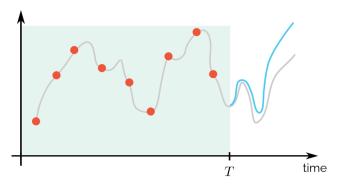
provided an initial condition $m{x}(0) = m{0}$.

Prediction

Generative mode:

$$egin{aligned} oldsymbol{x}(n) &= f(oldsymbol{W}_{in}oldsymbol{y}(n-1) + oldsymbol{W}oldsymbol{x}(n-1)), \ oldsymbol{y}(n) &= oldsymbol{W}_{out}oldsymbol{x}(n). \end{aligned}$$

We still need to specify the initial condition $\boldsymbol{x}(0)$.

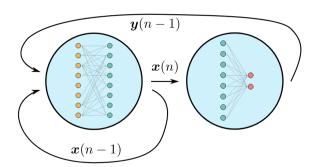


Prediction

Generative mode:

$$egin{aligned} oldsymbol{x}(n) &= f(oldsymbol{W}_{in}oldsymbol{y}(n-1) + oldsymbol{W}oldsymbol{x}(n-1)), \ oldsymbol{y}(n) &= oldsymbol{W}_{out}oldsymbol{x}(n). \end{aligned}$$

We still need to specify the initial condition $\boldsymbol{x}(0)$.

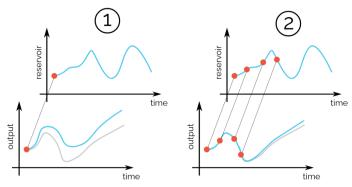


Prediction

Generative mode:

$$egin{aligned} oldsymbol{x}(n) &= f(oldsymbol{W}_{in}oldsymbol{y}(n-1) + oldsymbol{W}oldsymbol{x}(n-1)), \ oldsymbol{y}(n) &= oldsymbol{W}_{out}oldsymbol{x}(n). \end{aligned}$$

We still need to specify the initial condition $\boldsymbol{x}(0)$.



Improvements

Echo State Property

This condition is guaranteed when $\alpha=
ho({m W})<1$, so once ${m W}$ is randomly generated, it needs to be re-scaled:

$$\boldsymbol{W} := \frac{1}{\alpha} \boldsymbol{W}.$$

Tikhonov regularisation

Helps improve stability and overfitting.

$$egin{aligned} \min & \sum_{m=1}^{T} || oldsymbol{W}_{out} oldsymbol{x}(n) - oldsymbol{u}(n+1) ||_2^2 + eta || oldsymbol{W}_{out} ||^2 \ \implies oldsymbol{W}_{out}^T = ig(oldsymbol{X}^T oldsymbol{X} + eta oldsymbol{I} ig)^{-1} oldsymbol{X}^T oldsymbol{Y}. \end{aligned}$$

Noise immunisation

Helps improve stability and overfitting.

$$oldsymbol{x}(n) = f(oldsymbol{W}_{in}oldsymbol{u}(n) + oldsymbol{W}oldsymbol{x}(n-1)) + \xi Z,$$

where $Z \sim \mathrm{uniform}(-1,1)$ and ξ is the noise strength.

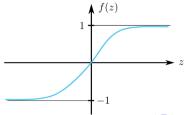
Leaky integrator neurons

Echo State Networks can be viewed as Euler discretisation of the leaky-integrator-type ODE:

$$egin{aligned} rac{doldsymbol{x}}{dt} &= -oldsymbol{x} + f(oldsymbol{W}_{in}oldsymbol{u} + oldsymbol{W}oldsymbol{x}) \ &\Longrightarrow &oldsymbol{x}(n) = (1- riangle t)oldsymbol{x}(n-1) + riangle t f(oldsymbol{W}_{in}oldsymbol{u}(n) + oldsymbol{W}oldsymbol{x}(n-1)), \ \end{aligned}$$
 where $riangle t \in [0;1]$.

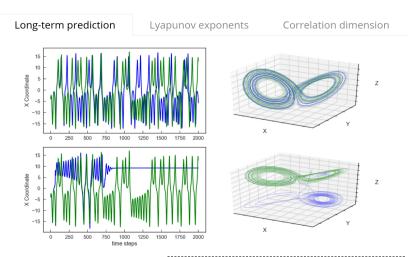
Input scaling

Scaling of the input weights $m{W}_{in}$ and shifting the input $m{u}(n)$ helps control the "amount of non-linearity".



Applications

Lorenz 63 model



Haluszczynski and Räth, *Chaos* **29**, 103143 (2019)

Lorenz 63 model

Long-term prediction

Lyapunov exponents

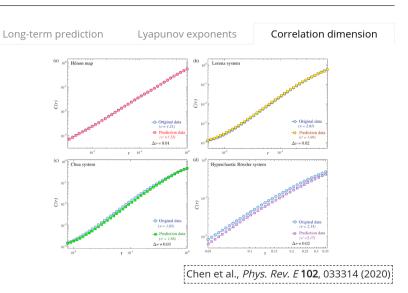
Correlation dimension

TABLE II. Three largest Lyapunov exponents $\Lambda_1 \geq \Lambda_2 \geq \Lambda_3$ for the Lorenz system [Eq. (5)], and for the reservoir set up in the configuration of Fig. 1(b) for R1 and R2. Since the reservoir system that we employ is a discrete time system, while the Lorenz system is a continuous system, for the purpose of comparison, Λ_1 , Λ_2 , and Λ_3 are taken to be per unit time; that is, their reservoir values (columns 2 and 3) are equal to the reservoir Lyapunov exponents calculated on a per iterate basis divided by Δt .

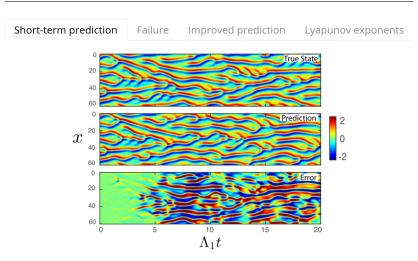
	Actual Lorenz system	R1 system	R2 system
Λ_1	0.91	0.90	0.01
Λ_2	0.00	0.00	-0.1
Λ_3	-14.6	-10.5	-9.9

Pathak et al., *Chaos* **27**, 121102 (2017)

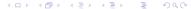
Lorenz 63 model



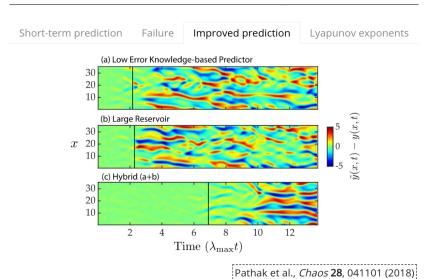
Kuramoto-Sivashinsky equation



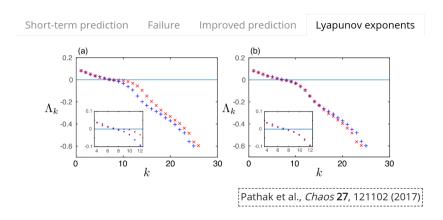
Pathak et al., *Chaos* **27**, 121102 (2017)



Kuramoto-Sivashinsky equation



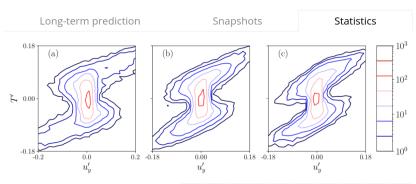
Kuramoto-Sivashinsky equation



Rayleigh-Bénard convection

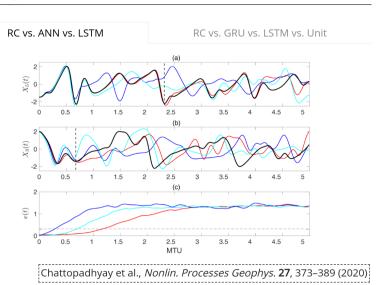
Pandey et al., *Phys. Rev. Fluids* **5**, 113506 (2020)

Rayleigh-Bénard convection

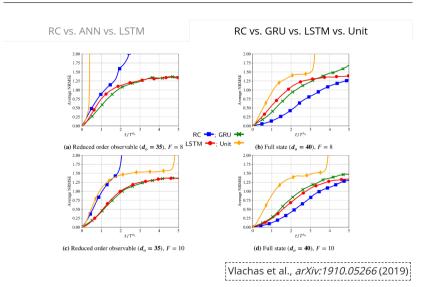


Pandey et al., *Phys. Rev. Fluids* **5**, 113506 (2020)

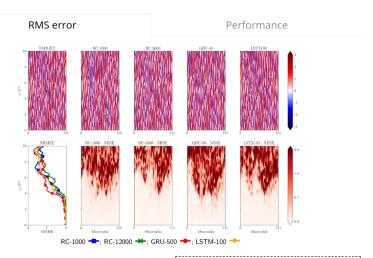
Comparative studies: Lorenz 96



Comparative studies: Lorenz 96

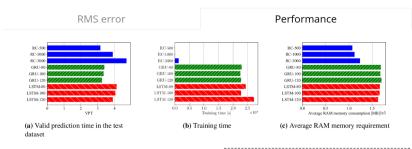


Comparative studies: K.-S. equation



Vlachas et al., *arXiv:1910.05266* (2019)

Comparative studies: K.-S. equation



Vlachas et al., *arXiv:1910.05266* (2019)

How can we use reservoir computing?

Building a dynamical system from observations only

Acceleration of numerical simulations

Super-parameterisation

Reduced-order modelling