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Dynamics of spatially localized states in
transitional plane Couette flow
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Unsteady spatially localized states such as puffs, slugs or spots play an important
role in transition to turbulence. In plane Couette flow, steady versions of these
states are found on two intertwined solution branches describing homoclinic snaking
(Schneider et al., Phys. Rev. Lett., vol. 104, 2010, 104501). These branches can be
used to generate a number of spatially localized initial conditions whose transition
can be investigated. From the low Reynolds numbers where homoclinic snaking is
first observed (Re < 175) to transitional ones (Re ≈ 325), these spatially localized
states traverse various regimes where their relaminarization time and dynamics are
affected by the dynamical structure of phase space. These regimes are reported and
characterized in this paper for a 4π-periodic domain in the streamwise direction as
a function of the two remaining variables: the Reynolds number and the width of
the localized pattern. Close to the snaking, localized states are attracted by spatially
localized periodic orbits before relaminarizing. At larger values of the Reynolds
number, the flow enters a chaotic transient of variable duration before relaminarizing.
Very long chaotic transients (t> 104) can be observed without difficulty for relatively
low values of the Reynolds number (Re≈ 250).

Key words: chaos, pattern formation, transition to turbulence

1. Introduction

Transition to turbulence is often studied in simple subcritical flows where turbulence
is found for a range of parameter values for which the laminar flow is linearly stable
(Orszag 1971; Romanov 1973; Meseguer & Trefethen 2003). Owing to the subcritical
nature of these flows, methods based on weakly nonlinear theory are of no use and
alternative methods have to be employed.

Plane Couette flow, the viscous three-dimensional flow between two oppositely
moving parallel plates, was experimentally found to transition to turbulence via
the spreading of turbulent spots, which resulted in the estimation of a critical
Reynolds number for transition: Rec = 325 ± 5 (Dauchot & Daviaud 1995). More
recently, intensive numerical investigations of localized turbulence in shear flows
using statistical methods were undertaken to locate regime changes. Important
results came first in pipe flow through the characterization of turbulent lifetimes

† Email address for correspondence: mmap@leeds.ac.uk
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(Eckhardt et al. 2007; Willis & Kerswell 2007; Avila, Willis & Hof 2010). This
effort culminated with the identification of a statistical critical Reynolds number based
on the comparison between the mean lifetime of a decaying turbulent puff and the
time scale corresponding to its splitting (Avila et al. 2011). The same technique was
utilized for plane Couette flow: the statistical threshold, where turbulent stripe splitting
and decay lifetimes intersect, was determined to be Rec ≈ 325 (Shi, Avila & Hof
2013), in remarkable agreement with the experiment by Dauchot & Daviaud (1995).
The observable bistability between laminar and turbulent flows motivated another
type of research based on front propagation (Pomeau 1986; Duguet & Schlatter
2013). Recent studies highlight the similarities between transition to turbulence and
directed percolation (Lemoult et al. 2016; Sano & Tamai 2016; Chantry, Tuckerman
& Barkley 2017). Even though these statistical approaches can be used to locate the
transition threshold, they only provide a limited understanding of the circumstances
under which transition occurs, which is necessary for the design of control strategies.

Other research has focused on the boundary between the basins of attraction
of the laminar and of the turbulent flows known as the edge of chaos (Skufca,
Yorke & Eckhardt 2006) for both pipe flow (Schneider, Eckhardt & Yorke 2007)
and plane Couette flow (Schneider et al. 2008; Duguet, Schlatter & Henningson
2009). In the latter case, it was found that, while the trajectories on the edge in
a small periodic domain converge to solutions closely resembling the lower branch
of spatially periodic Nagata solutions (Nagata 1990; Schneider et al. 2008), those
in large domains appear to be spatially localized (Duguet et al. 2009; Schneider,
Marinc & Eckhardt 2010b). When the domain is not extended in the streamwise
direction, edge states take the form of exact spatially (spanwise) localized solutions
comprised of streamwise-oriented streaks and rolls surrounded by laminar flow. These
are either equilibria or travelling waves in the streamwise direction depending on
their parity. These states, which have recently been related to maximum transient
growth perturbations (Olvera & Kerswell 2017), can be continued down in Reynolds
number to unveil a so-called homoclinic snaking bifurcation scenario (Schneider,
Gibson & Burke 2010a; Gibson & Schneider 2016). In this scenario, the branches
of localized states oscillate in a bounded region in parameter space where each
oscillation corresponds to an increase of the localized pattern by two rolls, one on
either side of the pattern. Homoclinic snaking has been thoroughly studied using
the Swift–Hohenberg equation (see Knobloch (2015) and references therein) but also
in a wide variety of physical systems where forcing is balanced by a dissipative
mechanism (Woods & Champneys 1999; Mercader et al. 2011; Beaume, Bergeon &
Knobloch 2013; Lloyd et al. 2015). In particular, in doubly diffusive convection, the
analysis of the homoclinic snaking and the stability of its solutions proved helpful to
understand the complex regime that arises directly above criticality (Beaume, Bergeon
& Knobloch 2018).

Homoclinic snaking is often associated with depinning whereby successive
wavelength nucleations at the edge of the localized structure result in the propagation
of the front connecting the pattern to the quiescent background. The speed of the front
is found to be proportional to the square root of the distance to the snaking (Burke &
Knobloch 2006; Knobloch 2015). The depinning instability is particularly interesting
in the case of transition to turbulence since it would provide a potential mechanism
by which a non-laminar state could invade the domain. Although depinning has
been observed in two-dimensional doubly diffusive convection (Bergeon & Knobloch
2008), the study of the same system in three dimensions has revealed the presence
of another instability associated with shorter time scales, preventing depinning from
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being observed (Beaume et al. 2018). Using localized turbulent initial conditions in
plane Couette flow, Duguet, Le Maître & Schlatter (2011) observed a small depinning
region to the right of the snaking region, which disappears in favour of stochastic
evolution.

In this work, we compute exact localized solutions of plane Couette flow and
investigate their dynamics when perturbed in Reynolds number to the right of the
snaking region, in order to understand better the mechanisms of transition and
relaminarization. We use a domain with a width twice that utilized by Schneider
et al. (2010a), comparable with the domain used by Duguet et al. (2011). In the next
section, we detail the flow configuration studied, followed by a description of the
spatially localized solutions that we used as initial conditions. The results are reported
in § 4, with details for the dynamical mechanisms observed in our simulations and
the various regions found in parameter space. Section 5 concludes this paper.

2. Problem set-up

We consider plane Couette flow, which is a three-dimensional flow confined between
two parallel walls moving in opposite directions as shown in figure 1. The dynamics
of this flow is governed by the Navier–Stokes equation:

∂tu+ (u · ∇)u=−∇p+
1

Re
∇

2u, (2.1)

where u is the velocity field with components u, v and w in the streamwise (x), wall-
normal (y) and spanwise (z) directions respectively, p is the pressure and t is the time.
The Navier–Stokes equation is accompanied with the incompressibility condition:

∇ · u= 0. (2.2)

These equations have been non-dimensionalized using the speed of the walls, U, and
half the gap between them, h, as units of velocity and distance. The Reynolds number
in (2.1) is

Re=
Uh
ν
, (2.3)

where ν is the kinematic viscosity of fluid. We consider periodic boundary conditions
in the streamwise and spanwise directions: u(x, y, z) = u(x + Γx, y, z + Γz), where
Γx=Lx/h and Γz=Lz/h are the non-dimensional spatial periodicities in the streamwise
and spanwise directions. No-slip boundary conditions are used in the remaining, wall-
normal direction: u|y=±1 = (±1, 0, 0).

Plane Couette flow possesses a laminar solution: the parallel, unidirectional flow
U = (y, 0, 0) associated with constant pressure. To characterize the flow, we track
the dynamics of the departures ũ from this state by writing u = U + ũ (Schmid &
Henningson 2001) and thus solve the system

∂tũ+ ṽex + y∂xũ+ (ũ · ∇)ũ=−∇p̃+
1

Re
∇

2ũ, (2.4a)

∇ · ũ= 0, (2.4b)

where ex is the unit vector in the x-direction. For notational simplicity, we hereafter
drop the tildes.
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x

y

z2h

˝x

˝z

FIGURE 1. Sketch of the plane Couette flow configuration and its laminar solution (thick
black line). The y=±1 walls are parallel, separated by 2h and move along the x-direction
with velocity ±U. The domain is considered periodic in both x and z with periods Γx and
Γz respectively.

Our numerical simulations are carried out using Channelflow which relies upon a
Fourier–Chebyshev–Fourier spatial discretization and provides a variety of temporal
schemes as well as a set of tools for numerical continuation and stability analysis
(Gibson 2014). Localized states in the spanwise direction are the simplest family
of spatially localized states in plane Couette flow, so we restrict ourselves to large
spanwise domains: Γx×Γy×Γz= 4π× 2× 32π. The domain is meshed using Nx= 32
and Nz = 512 Fourier points in the streamwise and spanwise directions and Ny = 33
Chebyshev points in the wall-normal direction, a similar discretization to that found
in the literature (Schneider et al. 2010a). To time integrate, we use Channelflow’s
third-order semi-implicit backward differentiation with time step 4t = 1/Re. All the
time integration results shown here have been obtained without the imposition of any
symmetry.

3. Initial conditions
There are two families of simple spatially localized states in plane Couette

flow: equilibria (hereafter EQ), which are symmetric with respect to the reflection
[u, v, w](x, y, z) −→ −[u, v, w](−x, −y, −z); and streamwise travelling waves
(hereafter TW), which are shift-reflect-symmetric ([u, v,w](x, y, z)−→ [u, v,−w](x+
Γx/2, y, −z)). These two solutions define branches on the bifurcation diagram in
figure 2 that exhibit homoclinic snaking (Woods & Champneys 1999; Burke &
Knobloch 2006; Schneider et al. 2010a; Knobloch 2015). In this figure, solutions are
characterized using the enstrophy:

D=
1

ΓxΓyΓz

∫∫∫
Ω

|∇× u|2 dx dy dz, (3.1)

where Ω is the computational domain and where D = 1 for the laminar solution.
Localized states dissipate more energy than the laminar solution (D > 1) and, for
large enough Re, are comprised of three (respectively two) streamwise-oriented rolls
for EQ (respectively TW) as shown in figure 3. As the branches undergo one back-
and-forth oscillation in Reynolds number in the direction of increasing energy, the size
of structure is increased by the nucleation of one roll on each side of the localized
structure. As a result, the localized states grow as one moves up the snakes while still
preserving their symmetry and parity: EQ always displays an odd number of rolls
while TW always displays an even number of rolls. At the top of the snakes, the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f L

ee
ds

, o
n 

13
 N

ov
 2

01
9 

at
 0

6:
41

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
15

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.154


418 A. Pershin, C. Beaume and S. M. Tobias
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FIGURE 2. (Colour online) Bifurcation diagram of the homoclinic snaking described by
the localized EQ and TW (blue and red lines respectively) of plane Couette flow. The
solutions are represented using their enstrophy D (defined in the text) plotted against the
Reynolds number Re. The Nagata solutions (dashed line) and the localized periodic orbits
PO5 (dotted line) are shown in the left-hand panel (PO5 will be discussed in the following
sections). The right-hand panel is an enlargement of the snakes that identifies some of the
initial conditions (S4, S5, S6, S7, S22 and S23) used in this paper.

solutions are domain-filling and TW continues to lower values of Re to reconnect the
unstable spatially periodic Nagata solution (Gibson, Halcrow & Cvitanović 2009) close
to its saddle node (see figure 2). The branch EQ differs in behaviour: it instead moves
to higher values of Re while the solution resembles the Nagata solution except for a
defect due to the lack of available room for the state to nucleate an additional roll
and fill the domain (Bergeon & Knobloch 2008). At the bottom of the branch EQ,
a subcritical Hopf bifurcation occurring slightly above the lowest saddle node gives
rise to a branch of spatially localized reflection-symmetric periodic orbits, namely
PO5. Oscillatory instabilities near the lowest saddle node of a snaking branch were
predicted by Burke & Dawes (2012) in non-variational and non-conservative systems.

We select the set comprised of the right saddle-node states of both snakes as
our initial conditions for time integration. For clarity, we name these according to
their roll count: the right saddle-node states of EQ are thus named S5, S7, etc., and
those of TW are named S4, S6, etc. Note that all the localized states computed
here are unstable (Schneider et al. 2010b) and that the larger the localized pattern,
the more unstable it is (Gibson & Schneider 2016). This is the case in another
three-dimensional symmetric fluid system (Beaume et al. 2018).

In order to compare the relaminarization dynamics of each initial condition at
various values of the Reynolds number, we calculate the associated relaminarization
time trelam, i.e. the time it takes for the flow to reach a small (attracting) neighbourhood
of the laminar fixed point where the flow dynamics is well described by the
linearized Navier–Stokes equation. We denote the time-dependent maximum pointwise
kinetic energy Emax(t) = maxx (1/2)|u(x, t)|2 and seek trelam such that Emax decays
exponentially for t > trelam. To set a similar condition on Emax, we ran a number of

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f L

ee
ds

, o
n 

13
 N

ov
 2

01
9 

at
 0

6:
41

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
15

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.154


Dynamics of localized states in plane Couette flow 419

0
-1

y

x

0

0

5

10

1

-1
y

x

0

0

5

10(a)

(b)

1

20 40
z

60 80 100

FIGURE 3. (Colour online) Localized (a) equilibrium lying on the lower branch of EQ at
Re≈ 200.055 and (b) travelling wave lying on the lower branch of TW at Re≈ 202.494.
Solutions are represented using the streamwise velocity in colour and the in-plane velocity
with arrows on the y-averaged plane (top panels) and x-averaged plane (bottom panels).

Initial condition S4 S5 S6 S7 S8 S9 S10 S11
Reynolds number 176.423 175.375 175.347 175.124 175.229 175.097 175.199 175.105

Initial condition S12 S13 S14 S15 S16 S17 S18 S19
Reynolds number 175.180 175.104 175.165 175.105 175.161 175.104 175.150 175.105

Initial condition S20 S21 S22 S23
Reynolds number 175.142 175.088 174.971 174.414

TABLE 1. Reynolds numbers corresponding to the various initial conditions considered.

preliminary simulations which all displayed chaotic oscillations around O(1) values
before relaminarizing. We observed that, for Emax < 0.1, all our simulations decayed
exponentially. Even though the basin of attraction of the laminar fixed point is wider
than the mere region of exponential decay of Emax(t), we acted out of caution and
defined trelam by solving Emax(trelam)= 0.1.

4. Main results
We take the states Si, with i= 4, 5, . . . , 23, as initial conditions and time-integrate

for a range of Reynolds numbers Re ∈ (Res(i); 350] where Res(i) is the Reynolds
number associated with Si, as shown in table 1. Before embarking on the study of
the mechanism for relaminarization, we discuss the typical dynamics undergone by
the flow.

4.1. Flow dynamics
The flows studied are of oscillatory nature, with oscillations typically replicating
the dynamics found on the periodic orbit PO5. To illustrate the flow dynamics,
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0 100 200 300
t

400

8
6
4
2
0

-2

20
30
40
50
60

T+
- S+

- S-
+T-
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70
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(b) E√
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FIGURE 4. (Colour online) Dynamics of PO5 at Re = 200.41072 represented through a
space–time plot of the streamwise-averaged and wall-normal-averaged kinetic energy Exy
(a) and through the temporal evolution of the roll kinetic energy Ev (dark blue) and of
the growth rate associated with the streak kinetic energy Eu (light blue) (b). The panels
are aligned so that they share the temporal scale (x-axis). All quantities are defined in the
text and the time is arbitrarily set to 0 at the beginning of the displayed time interval.
Vertical dashed lines correspond to special points as shown in figure 5. In the space–time
plot, the blue region corresponds to the laminar flow (Exy = 0) and red-coloured regions
correspond to the largest values of Exy.

we consider a localized periodic orbit with pattern wavelength lz ≈ 6.7 taken from
PO5 at Re = 200.41072 and shown in figure 4. To characterize it, we use the
streamwise-averaged and wall-normal-averaged kinetic energy:

Exy(z)=
1
2

∫ Γx

0

∫ Γy/2

−Γy/2
|u|2 dx dy. (4.1)

Figure 4(a) shows typical oscillations described by the flow, dominated by streaks
whose amplitude oscillates in time while a nucleation event starts but never reaches
completion. For the parameter values used, the oscillations have period T ≈ 189. The
period of oscillation is a function of the Reynolds number, but the description below
remains qualitatively accurate for most of the values of the Reynolds number studied.
To gain more insight, we decompose the flow field in Fourier series in the streamwise
direction (Wang, Gibson & Waleffe 2007):

u=
∞∑

k=0

uk(y, z)eiαkx
+ c.c., (4.2)

where α = 2π/Γx, k is a positive integer and c.c. stands for the complex conjugate
expression. This decomposition allows the introduction of the following quantities:

Eu =
1
Γylz

∫ Γy/2

−Γy/2

∫ Γz/2+lz

Γz/2
u0(y, z)2 dy dz, (4.3a)

Ẽu =
1
Γylz

∫ Γy/2

−Γy/2

∫ Γz/2+lz

Γz/2
u1(y, z)2 dy dz, (4.3b)
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FIGURE 5. (Colour online) Correlations between Eu, Ẽu, Ev and Ẽv . The labelled circles
and squares correspond to special points discussed in the text. The phase at these points
is indicated in figure 4 using vertical dashed lines of the corresponding colour.

Ev =
1
Γylz

∫ Γy/2

−Γy/2

∫ Γz/2+lz

Γz/2

[
v0(y, z)2 +w0(y, z)2

]
dy dz, (4.3c)

Ẽv =
1
Γylz

∫ Γy/2

−Γy/2

∫ Γz/2+lz

Γz/2

[
v1(y, z)2 +w1(y, z)2

]
, (4.3d)

where we have integrated over one spanwise wavelength located in the centre of the
localized structure to minimize the influence of the fronts. These quantities relate to
the internal dynamics of the state: Eu is associated with the streak kinetic energy,
Ev with that of the rolls while Ẽu and Ẽv are associated with those of the streak
and roll fluctuations respectively. To unravel dynamical mechanisms, we studied the
correlations between Eu, Ẽu, Ev, Ẽv and their time derivatives and report the most
useful results in figure 5. The solution displays low-amplitude rolls at t ≈ 120 in
figure 4 corresponding to the point S+

−
in figure 5. For roll energies Ev / 3.63, the

growth rate of the streaks dEu/dt is positively correlated with the roll energy and
positive, leading to streak growth (figure 5a). The growth of the streaks leads to
the growth of the streak fluctuations, approximately 6 time units later, as indicated
in figure 5(b). This step is followed, again with a time lag of about 8 units, by
the growth of the roll fluctuations (figure 5c) and then, 9 units of time later, by
that of the rolls (figure 5d). This overall growth of the pattern continues beyond
the turning point T−

+
at Ev ≈ 3.63, where the roll energy and the streak growth

become anti-correlated. The shift in dynamics past this turning point is illustrated
in figure 4(b). The reciprocal shift, where roll energy and streak growth become
positively correlated, occurs at T+

−
when Ev ≈ 4.05. When the roll energy reaches

Ev ≈ 6.61, the roll overgrowth leads to the decay of the streaks and, successively, to
the delayed decay of the streak fluctuations, roll fluctuations and eventually rolls, as
shown by all the positive correlations in figure 5. Before closing the loop, the flow
readjusts at low amplitude through an event where the streaks grow and then decay
again between S−

+
and S+

−
and have a negative correlation with their fluctuations. These
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FIGURE 6. (Colour online) Snapshots along the cycle at t≈ 300 (a) and t≈ 410 (b) for
Re= 200.41072 accompanied by the lower (c) and upper (d) Nagata branch states at Re≈
202.3.

cycles orchestrate the dynamics within the localized pattern at most of the Reynolds
numbers we investigated and only quantitative changes of the energy thresholds have
been noticed, without any impact on the qualitative behaviour analysed in this section.

Figure 6 shows the velocity field along the cycle at t ≈ 300 as Ev reaches its
minimum and at t ≈ 410 as Ev reaches its maximum for Re = 200.41072, and
compares it to the Nagata solutions (lower- and upper-branch states) at a similar
value of the parameter. When the rolls are at their weakest during the cycle, the
flow closely resembles the lower-branch Nagata solution and as the rolls are at their
strongest, the flow looks similar to the upper-branch Nagata solution. As such, this
cyclic dynamics can be seen as the signature of a heteroclinic connection between
the two Nagata solutions: the manifold connecting the lower to the upper branch is
associated with the re-energizing of the streaks by the rolls (together with the delayed
growth of the other quantities) and the manifold connecting the upper to the lower
branch is associated with the suppression of the streaks due to overgrown rolls.

4.2. Parameter space map
Figure 7 shows the relaminarization time trelam as a function of Re for all our initial
conditions. We used a discrete sequence of Re ∈ (Res; 280] whose spacing was
manually adjusted and refined in more sensitive regions. Our results unveil a complex
scenario with a very clear macroscopic organization in which the size of the initial
condition bears more importance than its type, as shown in figure 7 where the initial
conditions are sorted by the number of rolls in the localized state, thereby alternating
EQ and TW initial conditions. We thus concentrate on EQ only.

Figure 7 also highlights the presence of plateaux of nearly constant relaminarization
times around trelam = 400 interspersed with relatively smaller regions of longer-lived
transients. The presence of these plateaux and regions does not appear to be a
function of the size of the localized initial conditions; however, the location of these
regions is a monotonic function of this quantity. At low Reynolds numbers, a series
of peaks exists in the vicinity of Res where the relaminarization time tends to infinity
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FIGURE 7. (Colour online) Relaminarization times for EQ initial conditions (blue) and
TW initial conditions (light pink) at Re ∈ [180; 280]. The top view of the streamwise
velocity of each EQ initial condition is shown on the left. For clarity, each relaminarization
time curve has been displaced upwards by 1000 time units compared to the previous one:
trelam←− trelam + 1000(i− 4) for initial condition Si. Corresponding profiles for the initial
conditions used (S5–S23) are shown on the left, next to the corresponding curve. As a
reference, the plateaux observed on all the curves for Re< 240 correspond to trelam∼ 400.

owing to the fact that the initial condition is a fixed point at Res. We shall denote the
corresponding region of accumulating peaks as R1. Increasing in Reynolds numbers,
we refer to the next region of increased relaminarization time as R2. The boundaries
of R2 move to larger values of the Reynolds number and get closer to each other
as the size of the localized pattern decreases and collide between initial conditions
S8 and S9. At even higher Reynolds numbers, between Re≈ 245 and Re≈ 252, one
encounters another region with long-lived transients: R3. This region is not sensitive
to the size of the initial condition and only exists for Si, i > 8. For Re> 280, most
simulations are long-lasting. We denote this region R4. The plateaux, surrounding two
of the above regions and denoted P, are the locations of the shortest relaminarization
times. There, the flow does not relaminarize immediately but undergoes oscillations
as shown in figure 8. On these plateaux, the localized states typically undergo one or
two oscillations before decaying and the wider initial conditions split, giving rise to
two spots which, in turn, oscillate before decaying. This splitting event is a crucial
phenomenon for regions R2 and R3 and will be discussed in §§ 4.4 and 4.4.2.
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FIGURE 8. (Colour online) Dynamics observed on the plateaux P and exemplified by the
spatiotemporal evolution of the averaged kinetic energy Exy for S5 (a) and S19 (b) time-
integrated at Re= 220.

The localized initial conditions at the top and bottom of the snaking do not conform
to the above general scenario. The smallest initial conditions develop a different kind
of behaviour above Re = 240. In particular, S4 enters R4 at Re ≈ 250 whereas S5
exhibits a region of longer transient between Re = 242 and Re = 261.25. The initial
condition S6 displays a similar region to S5, albeit of smaller extent. This region is
referred to as R3a. The wider initial condition S7 displays little dynamic change for
Re & 190 except for the presence of one peak at Re≈ 253. This peak is a signature
of the region R3 which is broader for S8 and reaches its full size for S9. The largest
initial condition, S23, does not follow the above picture either as it is a near domain-
filling state.

The above observations can be used to provide a schematic of parameter space
shown in figure 9. In the next sections, we characterize the various regions identified
above.

4.3. Dynamics in the vicinity of the snaking
In the vicinity of the snaking, our initial conditions do not display depinning but
rather a well-structured behaviour within region R1 characterized by a series of peaks
accumulating at Res and corresponding to sudden increases of the relaminarization
time as a function of Re. As the width of the initial condition increases, this region
becomes smaller and the density of peaks increases. As this behaviour is similar for
all initial conditions, we focus our attention on the two localized EQ initial conditions
displaying the largest R1 regions: S5 and S7.

Figure 10(a) shows an enlargement of R1 for S5 where all but the rightmost peak
are represented. Since the initial condition is a (stationary) solution at Re = Res(5),
the relaminarization time tends to infinity at this value. As we move away from
Res(5), the relaminarization time decreases but does not do so monotonically. Instead,
it undergoes a succession of peaks where the relaminarization time becomes infinite
and that accumulates at Res(5). The last two peaks of S5 are somewhat different.
These peaks, located at Re ≈ 187 and at Re ≈ 208 (not shown), display intricate
variations and may not lead to infinite time scales due to the more complex dynamics
at these higher values of the Reynolds number.

The diverging relaminarization times at the peaks are associated with the presence
of a periodic orbit. This phenomenon is shown in figure 11. On the left of the
peak located at Re ≈ 181, the flow dynamics describes five oscillations which are
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FIGURE 9. Schematic of the parameter space investigated. Regions R1, R2, R3 and R4
are further studied in §§ 4.3 and 4.4 and are interspersed with plateaux P. In most of these
cases, an estimate of the typical observed relaminarization time is given. Note the variable
scale of the horizontal axis, used for readability.
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FIGURE 10. (Colour online) Enlargements of figure 7 for the region R1 of initial
conditions S5 (a) and S7 (b). The circle denotes the local minimum of trelam located in
the region between two neighbouring peaks, marked by squares. All peaks shown in (a),
except for the one shown in the inset, are associated with infinite relaminarization times
but are here represented with trelam= 5000 for clarity. Note that we excluded the rightmost
peak of the region, located at Re≈ 208, for clarity as well. Unlike in (a), the peaks shown
in (b) have finite trelam.

clearly visible with suitably chosen variables such as the L2-norms of v and w in
the appropriately rotated frame of reference. These oscillations correspond to the
non-monotonic departure from the location of the initial condition until the basin of
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FIGURE 11. (Colour online) (a) Trajectories emanating from S5 in R1 and represented
through the L2-norms of v and w in the rotated frame of reference (w̃= ‖w‖ cos 70◦ −
‖v‖ sin 70◦ and ṽ = ‖w‖ sin 70◦ + ‖v‖ cos 70◦) for Reynolds numbers chosen right before
(Re= 180.875) and after (Re= 181.1875) the peak at Re≈ 181.0625. Corresponding time
evolution of the averaged kinetic energy Exy before the peak (b) and after the peak (c).
(d) Time evolution of Exy at the peak.

attraction of the laminar solution is reached (figure 11b). As the Reynolds number
is increased past the threshold value for the peak, one such oscillation is lost due
to the influence of the stable manifold of the laminar solution at shorter time (see
the differences between the dashed red and the grey trajectories around ṽ = 0.035
and w̃ = 0.0025). As a consequence, it only takes four oscillations for the flow to
decay on the right of this peak, as shown in figure 11(c). At the peak (figure 11d),
the flow follows the stable manifold of the periodic orbit PO5 whose neighbourhood
is reached after about 500 units of time and where the dynamics shadows that
described in § 4.1. This approach to an unstable periodic orbit suggests the existence
of heteroclinic connections between steady localized states and periodic orbits in
plane Couette flow. Figure 12 shows such a connection between the lower branch of
EQ and PO5 at Re ≈ 186.17105 which was obtained by perturbing along the most
unstable eigendirection of the lower EQ branch state and time-integrating. After the
initial sequence of roll nucleation events, the oscillations become a prominent feature
of the flow which readjusts and converges to PO5.

The behaviour observed above extends to all the peaks in the region R1: every time
a peak is crossed in the direction of decreasing values of the Reynolds number, the
flow undergoes one more oscillation before relaminarizing. This, together with the
peak accumulation at Res, accounts for the gradual increase of the relaminarization
time. Conversely, as Re in increased past the rightmost peak of R1, the flow only
displays two oscillations before eventual decay.
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FIGURE 12. (Colour online) Heteroclinic connection between the lower branch of EQ and
PO5 illustrated by the spatiotemporal evolution of Exy for the exact equilibrium found
at the lower branch of EQ at Re = 186.17105 and perturbed along its most unstable
eigendirection.

The other initial conditions led to qualitatively similar results with the difference
that the peaks obtained in R1 for Si, i > 5, are not associated with diverging
relaminarization times. Figure 10(b) shows the behaviour of the relaminarization time
in the region R1 for S7 and exemplifies the smooth behaviour of the relaminarization
times at the peaks. These peaks correspond to the approach of a periodic orbit
constituted of seven rolls and analogous to PO5 in dynamics. The periodic orbit PO5
has only one unstable eigenmode for most of the Reynolds numbers within R1 and,
thus, changing the Reynolds number acts as a projection shift of the initial condition
onto the unstable manifold of PO5. At the peak, S5 has exactly no projection onto
the unstable manifold of PO5, allowing the relaminarization time to approach infinity
as the trajectory converges to PO5. Unlike PO5, PO7 has more than one unstable
eigendirection and, as a consequence, the projection of S7 onto the unstable manifold
of PO7 does not go to zero by simply changing the Reynolds number and the
relaminarization time never diverges. A similar reasoning holds for the peaks of
initial conditions wider than S5.

Peak accumulation is a generic feature of R1 and is characterized by a geometrical
convergence law:

Ren+1 − Res(i)= αi[Ren − Res(i)], (4.4)

where Ren is the Reynolds number corresponding to the nth peak (n is counted from
right to left) and αi is the convergence coefficient that is a function of the initial
condition Si. Figure 13(a) exemplifies this on S7 and shows very good accuracy
between the data and law (4.4) for α7 = 0.45. The same law applies successfully to
other initial conditions, albeit with different convergence ratios αi. The corresponding
convergence ratios are shown for S5, S7, S9, S11 and S13 in figure 13(b) and
indicate a decreasing trend as the number of rolls i increases, potentially converging to
α∞≈ 0.2. This signifies that as the initial condition increases in size, the accumulation
of peaks becomes faster and faster and the width of the region R1 decreases, a fact
already observed in figure 7 and sketched in figure 9.

The overall decreasing trend of the relaminarization time with the Reynolds number
can be quantified by a difference between two successive local minima of trelam. This
quantity, which we denote β, only has a weak dependence on the initial condition so
we will use its value for S5 regardless of the initial condition: β ≈ 155. We can thus
infer the following approximation for the relaminarization time at the local minima:
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FIGURE 13. (Colour online) (a) Peak location for S7 (circles) and the corresponding
geometric law Ren+1 − Res = 0.45(Ren − Res) (solid line). (b) Convergence rates αi for
the five most localized initial conditions.

tn = t0 + βn, where tn is the value of the local minimum of trelam located to the left
of the peak at Ren and t0 is the relaminarization time observed at the local minimum
located to the right of the first (highest Re) peak. In order to obtain a relationship
between tn and Re, we approximate the location of the local minimum Re′n to be
exactly between the left and right peaks: Re′n= (1/2)(Ren+1+Ren). Since the solution
of (4.4) is Ren − Res = [Re0 − Res]α

n
i , we obtain

tn(Re′n)=
β

ln αi
ln

2(Re′n − Res)

(Re0 − Res)(1+ αi)
+ t0. (4.5)

Extending this law to continuous values of the Reynolds number, we can observe
that, close enough to Res, the envelope of the relaminarization time grows with rate
dtrelam/dRe= O((ln αi(Re− Res))

−1). The right-hand panel in figure 14 confirms that
this law is a good first-order approximation to the relaminarization time for S5 close
to the saddle node.

4.4. Onset of chaotic transients
Further from the snaking, our initial conditions display intermittent chaotic transients.
This non-trivial dynamics is partitioned in parameter space into three regions separated
by the plateaux described previously. The first such region is R2 and the solutions,
although displaying weak sensitivity to the parameter value, do not typically have
relaminarization times larger than trelam= 2000. Long-lasting chaotic transients can be
found in region R3 between Re= 245 and Re= 252, with relaminarization times up to
trelam=O(104), and display much more sensitivity to the parameter value. For Re>290,
we enter region R4 where only rare and isolated initial conditions relaminarize within
the time periods of interest here.

4.4.1. Splitting
The boundaries of the chaotic regions are identified with the splitting of the

initial state into two pulses which then undergo oscillations before decaying. This
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FIGURE 14. (Colour online) (a) Relaminarization times against the peak number n at the
local minima of the curve in figure 10 for S5 (full circles) and an approximation law
(solid line). (b) The relaminarization time for S5 (solid line) together with the first-order
approximation law for its local minima (circles): equation (4.5) (dashed line) for t0= 402,
β = 155, αi = α5 = 0.74, Res = Res(5)= 175.375 and Re0 = 180.375.

is best illustrated for the simplest of these regions: R2, which exists for initial
conditions wider than S8. Region R2 is small and close to R3 for the narrower
initial conditions (see figure 7). It moves to smaller Reynolds numbers and expands
for wider initial conditions. Figure 15 shows the relaminarization time within R2
for S13 and space–time plots of Exy for characteristic simulations in R2. At the
beginning of R2 (Re ≈ 202.5), the central part of the localized pattern undergoes
decay at t≈ 300, forming two dormant spots that survive until t≈ 550, as shown in
figure 15(a1). As the Reynolds number is increased, these spots survive for a longer
time and become active, undergoing such oscillations as those described in § 4.1 and
resulting in relaminarization times of the order of 103 as shown in figure 15(a2).
As the Reynolds number is increased within this region, the number of core rolls
that decay during the splitting event decreases until it is temporarily suppressed
(see the evolution of the pattern at t ≈ 350 in figure 15a1,a2,a3,b1). This does not
rule out the splitting event completely but rather postpones it: the initial pattern
can be observed to oscillate twice before splitting until Re ≈ 206.5, but then to
oscillate three times before splitting (see figure 15(b2) for instance). This behaviour
is observed until Re≈ 211 where the evolution mirrors that for Re< 206.5: splitting
occurs after two oscillations and manifests itself by the decay of the two central rolls,
the number of these decaying rolls increasing as Re increases until the edge of R2
(see figure 15c1,c2,c3).

The region R2 is structured as described above until S14 where the gain of one
oscillation of the initial pattern is obtained via a sharp peak similar to the peaks
observed in R1, instead of an extended region where the inner dynamics changes. We
attribute this to the fact that the Reynolds number is too low to sustain spot dynamics.
The left boundary of R2 thus becomes less well defined and does not approach Res(i)
as fast for Si, i > 14, as for i< 14 as i increases.

An interesting feature of the splitting event that characterizes R2 is that the
spanwise width of the spots immediately after splitting at the boundary of R2 is the
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FIGURE 15. (Colour online) The upper left-hand plot shows relaminarization times in
R2 for S13. Each of the other nine panels contains a space–time plot of the xy-averaged
kinetic energy Exy corresponding to simulations grouped into three sets showing (a) the
narrowing of the gap between the two pulses, (b) simulations with an extra oscillation
of the original pattern and (c) the widening of the gap between the two pulses. The
corresponding Reynolds numbers are located in the upper left-hand plot.

same for all initial solutions and coincides with that of the lower part of the branch
EQ: the resulting structures are constituted of three rolls. This indicates that the
boundaries of R2 correspond to the stable manifold of a fixed point that is a bound
state of localized structures similar to the lower part of the branch EQ and that are
unevenly spaced out. This was confirmed by the successful convergence of several
solutions taken right after splitting to the above steady state via a Newton–Krylov
search. Figure 16 exemplifies one such steady two-pulse state converged from the flow
snapshot taken from the time integration of S13 at Re = 202.546875. Convergence
from other initial conditions can be achieved and would yield a similar state but with
different inner/outer spacing.

4.4.2. Onset of long-lived chaotic transients
The first occurrence of long chaotic transients is found in region R3 which exists for

all initial conditions wider than S7 and spans 245<Re<252 with little dependence on
the initial condition. In a similar way to R2, its beginning and end are characterized
by the splitting of the initial pattern into two spots. Figure 17 shows the dependence
of the relaminarization time on the Reynolds number for initial condition S15 between
Re= 244 and Re= 254. For this initial condition, R3 starts at Re≈ 245 and finishes
at Re ≈ 251.5. Simulations within R3 typically display 700 < trelam < 850 with most
values around 750 and are only weakly sensitive to the value of the Reynolds
number. Exceptions to this are observed in the form of parameter windows where
the relaminarization time takes much larger values and where the flow becomes
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FIGURE 16. (Colour online) Example of two-pulse localized equilibrium converged by a
Newton–Krylov hookstep search. The initial guess for the search was obtained from the
snapshot of the time integration of S13 at Re = 202.546875 at time t = 600 where the
spots formed by the splitting are well separated by the laminar flow.

244

103

104

246 248 250
Re

252 254

t re
la

m

FIGURE 17. (Colour online) Relaminarization time trelam in R3 as a function of the
Reynolds number Re for initial condition S15. These results were obtained for Reynolds
number increments of 0.03125.

strongly sensitive to the Reynolds number. These windows have various sizes and
different initial conditions produce a different number of such windows within R3:
e.g. S11 and S15 have four such windows each while S9 only has two. Inside these
windows, the sensitivity to the Reynolds number allows the presence of extremely
long chaotic transients, the longest of those we obtained being for S9 at Re= 251.375
where trelam ≈ 21 320. We show in figure 18 such a long simulation for S9, taken at
Re = 248.5 and yielding trelam ≈ 12 505. This simulation starts in the usual way: the
initial pattern splits into two spots at around t = 200 which then oscillate and grow
spatially by nucleating rolls on either side. This process continues until about t= 550
where both spots collide. Shortly after, the central part of the structure collapses in an
event that typically leads to the complete relaminarization of the flow. In this specific
instance, the ‘outer’ parts of the structure manage to survive and continue their
independent evolution. The flow dynamics that ensues is long lived and likely similar
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FIGURE 18. (Colour online) Space–time plot of the xy-averaged kinetic energy Exy for
initial condition S9 at Re=248.75 in R3 (a) and time evolution of the reflection symmetry
indicator q as explained in the text (b).

to that observed in percolation dynamics (Pomeau 1986; Barkley 2016; Lemoult et al.
2016). Chaotic transients have also been observed at such low Reynolds numbers
by Schmiegel & Eckhardt (2000) and Barkley & Tuckerman (2005) using different
methods.

Lastly, at Re≈ 290, a brutal transition takes place: immediately below the threshold
value, all simulations relaminarize in about 300 units of time whereas we only
observed rare cases where relaminarization occurs in less than 2000 time units above
the threshold as can be seen from figure 19. This transitional region, R4, exhibits
front propagation and long time scales and suggests transition to turbulence, as it is
understood in the statistical sense (Avila et al. 2011; Shi et al. 2013; Barkley 2016).
In spite of the long time scales, the dynamics in R4 is different from that observed
in R3, where we observe a competition between the growth of the structure via
front propagation and the sudden decay of roll clusters (see figure 18). Here, front
propagation overwhelms cluster decay and leads to domain-filling states. Figure 20
shows a typical R4 simulation, observed for S13 at Re = 300. The presence of
relatively large number of long-lived simulations in R4 allows the quantification of
the front speed. We did not find any significant difference in front speed between
initial conditions. Additionally, there was no apparent variation in the front speed in
the interval Re∈ [280; 350]; the average front speed value is 〈c〉 ≈ 0.02. These results
compare very well with those of Duguet et al. (2011).

Since the equilibrium initial conditions under consideration are all reflection
symmetric, it is important to understand how the flow departs from the symmetry
subspace. We quantify the deviation from the reflection symmetry by

q(t)=
(

1
ΓxΓyΓz

∫∫∫
Ω

[u(x, y, z, t)+ u(−x,−y,−z, t)]2 dx dy dz
)1/2

. (4.6)

A typical time evolution for this quantity is shown in figure 18(b). The deviation
from the reflection symmetry grows until it reaches O(1) values at t≈ 2500. Similar
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FIGURE 19. (Colour online) Relaminarization times in R4 for the right saddle-node
states of EQ time-integrated for Re ∈ [270; 350]. Relaminarization times were cut off
at trelam = 2000 to avoid overlapping and save computation time. As a consequence, the
large plateaux where trelam= 2000 correspond to long-lasting chaotic transients that extend
beyond t= 2000.
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FIGURE 20. (Colour online) Space–time plot of the xy-averaged kinetic energy Exy for
initial condition S13 at Re= 300 in R4. Relaminarization is not shown.

evolutions of q are observed in other simulations and imply that asymmetry becomes
important only for t & 2000. All shorter simulations can be treated as fully symmetric
ones. This was confirmed by the recalculation of one of the relaminarization curves
from figure 7 with imposed reflection symmetry. The only simulations exhibiting
significant asymmetry correspond to chaotic transients with long enough lifetime
which occur only in R3 and R4.

5. Discussion
In this paper, we have studied plane Couette flow in a periodic domain with

large spanwise and short streamwise periods. We used spatially localized states
found on snaking branches as initial conditions and investigated their transitional
dynamics beyond the snaking. We varied two parameters: the size of the localized
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pattern constituting the initial condition and the Reynolds number. By tracking the
relaminarization time trelam for each simulation, we identified plateaux in parameter
space where the initial condition relaminarizes quickly and a hierarchy of regions
where it evolves into a more or less long-lived chaotic transient. We find that the
dynamics in the vicinity of the snaking is controlled by an oscillatory instability
whose growth leads to the crossing of a manifold leading to relaminarization. The
number of oscillations undergone by the flow before crossing this manifold is a
function of the Reynolds number and the width of the initial localized pattern. It is
well described by our ad hoc model. Farther away from the snaking, one encounters
various regions of increasing complexity initiated by the splitting of the original
pattern into two spots and characterized by increasingly long relaminarization times
and an increasingly high sensitivity to the location in parameter space (sensitivity
to the Reynolds number but also to the width of the patterns and to other small
perturbations).

Contrary to Duguet et al. (2011), we did not find any signature of depinning,
a behaviour associated with snaking and in which the localized state grows by
successive roll nucleations and with a frequency that depends on the distance to
the snaking. Although this instability occurs in other systems (Coullet, Riera &
Tresser 2000; Saarloos 2003; Knobloch 2015), it is not expected in all systems that
exhibit snaking; for example, three-dimensional doubly diffusive convection displays
an instability whose growth rate is much larger than that of depinning and that is
responsible for the decay of the localized patterns before any depinning event could
take place (Beaume et al. 2018). The spatially localized snaking states we obtained
in this paper are also unstable to additional oscillatory instabilities which dominate
the dynamics: they lead to the direct relaminarization of the flow at low values of the
Reynolds number and to splitting then relaminarization at larger Re. Figure 21 shows
the unstable eigenvalues associated with the right saddle-node states of the branch EQ.
The depinning mode is marginal at the saddle node but we observed the presence of
unstable oscillatory eigenmodes for all initial conditions of width equal to or greater
than that of S7. These instabilities grow on O(100) time scales and, as a result,
prevent depinning from being observed. Another complication arises in plane Couette
flow: snaking is sensitive to the imposed streamwise period of the flow (Gibson
& Schneider 2016). Our choice (Lx = 4π) yields snaking in 170 < Re < 175 while
Duguet et al. (2011) chose Lx = 10.417 and observed snaking in 207.4< Re< 213.2.
This difference also affects the stability of the localized states: in the latter case,
non-depinning modes are associated with longer time scales and allow for depinning
to be observed.

Understanding the splitting instability is critical to gain further knowledge on long-
lived chaotic transients. This instability is the consequence of the crossing of the stable
manifold of a two-pulse exact (either equilibrium or travelling wave) solution. One
side of this stable manifold leads to relaminarization while the other leads to the
activation of the newly formed spots. The most interesting of these two-pulse states is
the one that has the smallest number of rolls, corresponding to the onset for the region
dynamics. One step in understanding this instability further would be to use these
two-pulse states as a proxy for initial conditions in a relaminarization study similar
to that described here.

The cyclic dynamics described in § 4.1 supports most of the low-Reynolds-number
dynamics observed in this paper. The oscillations described here likely relate to those
found in Barkley & Tuckerman (2005) occurring at similar Re and with similar
oscillation period. This cyclic dynamics is reminiscent of the self-sustaining process
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FIGURE 21. (Colour online) Unstable eigenvalues λ of the saddle-node states of the
branch EQ. The left (respectively right) panel shows their real (respectively absolute
imaginary) part. Blue stars denote the eigenvalue associated with the depinning mode.
Green circles denote the eigenvalue associated with one-pulse oscillatory instabilities that
trigger amplitude oscillations of the whole localized structure. Red triangles, cyan squares,
purple pentagons and yellow hexagon denote the eigenvalues associated with oscillatory
instabilities triggering two-, three-, four- and five-pulse oscillations.

(SSP) (Waleffe 1997, 2009) in which a three-step equilibrium loop was found to
support the existence of exact solutions in shear flows. The observed cycles consist
of heteroclinic connections between the lower- and upper-branch Nagata solutions
and the mechanisms by which they are sustained seem more complex than the SSP.
As such, the oscillatory dynamics observed here looks similar to the EQ1–EQ2
heteroclinic connection found in Halcrow et al. (2009). The lower-branch Nagata
solution is known to be an SSP state (Wang et al. 2007), but the upper-branch one
is known to not have the same scaling and thus to not obey the same balance. This
cyclic process can then be thought of as related to the SSP and the regeneration cycle
(Hamilton, Kim & Waleffe 1995; Kawahara & Kida 2001) whilst organizing the flow
dynamics at low values of the Reynolds number and supporting the existence of
some periodic orbits. It may also be relevant to the relative periodic orbits found by
Viswanath (2007) (solutions P2 to P6) which seem linked to the recurrent bursting
events observed experimentally at higher Reynolds numbers. Our periodic orbit PO5
might be thought of as a localized counterpart of these solutions where drifting in
the spanwise direction is prevented by the pinned fronts.

Finally, the maps of relaminarization times for low Re (figure 7) and transitional Re
(figure 19) together with the information about dynamical properties of the flow can
be used as a framework for the design and benchmarking of control strategies aimed at
controlling transition to turbulence. The statistics extracted from the relaminarization
times and the Reynolds numbers of the identified regions may provide one of the
possible sources of information for the quantification of the control efficiency. Owing
to the oscillatory nature of the dynamics observed, it is natural to propose control
strategies that interact with the flow frequencies exploiting resonance mechanisms.
Given the spanwise localization of our initial conditions, the aforementioned results
will remain valid for domains of sufficiently large spanwise extent and of streamwise
periodicity 4π.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f L

ee
ds

, o
n 

13
 N

ov
 2

01
9 

at
 0

6:
41

:1
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
15

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.154


436 A. Pershin, C. Beaume and S. M. Tobias

Acknowledgements
We are grateful to Professor J. Gibson for assistance with the computations. A.P.

acknowledges EPSRC for supporting him through a Doctoral Training Partnership
Studentship. This work was undertaken on ARC3, part of the High Performance
Computing facilities at the University of Leeds, UK.

REFERENCES

AVILA, K., MOXEY, D., DE LOZAR, A., AVILA, M., BARKLEY, D. & HOF, B. 2011 The onset of
turbulence in pipe flow. Science 333 (6039), 192–196.

AVILA, M., WILLIS, A. P. & HOF, B. 2010 On the transient nature of localized pipe flow turbulence.
J. Fluid Mech. 646, 127–136.

BARKLEY, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803,
P1.

BARKLEY, D. & TUCKERMAN, L. S. 2005 Turbulent-laminar patterns in plane Couette flow. In IUTAM
Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, pp. 107–127.
Springer.

BEAUME, C., BERGEON, A. & KNOBLOCH, E. 2013 Convectons and secondary snaking in three-
dimensional natural doubly diffusive convection. Phys. Fluids 25 (2), 024105.

BEAUME, C., BERGEON, A. & KNOBLOCH, E. 2018 Three-dimensional doubly diffusive convectons:
instability and transition to complex dynamics. J. Fluid Mech. 840, 74–105.

BERGEON, A. & KNOBLOCH, E. 2008 Spatially localized states in natural doubly diffusive convection.
Phys. Fluids 20, 034102.

BURKE, J. & DAWES, J. H. P. 2012 Localized states in an extended Swift–Hohenberg equation.
SIAM J. Appl. Dyn. Syst. 11 (1), 261–284.

BURKE, J. & KNOBLOCH, E. 2006 Localized states in the generalized Swift–Hohenberg equation.
Phys. Rev. E 73 (5), 056211.

CHANTRY, M., TUCKERMAN, L. S. & BARKLEY, D. 2017 Universal continuous transition to
turbulence in a planar shear flow. J. Fluid Mech. 824, R1.

COULLET, P., RIERA, C. & TRESSER, C. 2000 Stable static localized structures in one dimension.
Phys. Rev. Lett. 84, 3069–3072.

DAUCHOT, O. & DAVIAUD, F. 1995 Finite amplitude perturbation and spots growth mechanism in
plane Couette flow. Phys. Fluids 7 (2), 335–343.

DUGUET, Y., LE MAÎTRE, O. & SCHLATTER, P. 2011 Stochastic and deterministic motion of a
laminar-turbulent front in a spanwisely extended Couette flow. Phys. Rev. E 84 (6), 066315.

DUGUET, Y. & SCHLATTER, P. 2013 Oblique laminar-turbulent interfaces in plane shear flows. Phys.
Rev. Lett. 110, 034502.

DUGUET, Y., SCHLATTER, P. & HENNINGSON, D. S. 2009 Localized edge states in plane Couette
flow. Phys. Fluids 21 (11), 111701.

ECKHARDT, B., SCHNEIDER, T. M., HOF, B. & WESTERWEEL, J. 2007 Turbulence transition in
pipe flow. Annu. Rev. Fluid Mech. 39, 447–468.

GIBSON, J. F. 2014 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep., University
of New Hampshire, Channelflow.org.
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