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Training a neural network to predict dynamics it has never seen
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Neural networks have proven to be remarkably successful for a wide range of complicated tasks, from image
recognition and object detection to speech recognition and machine translation. One of their successes lies in
their ability to predict future dynamics given a suitable training data set. Previous studies have shown how
echo state networks (ESNs), a type of recurrent neural networks, can successfully predict both short-term and
long-term dynamics of even chaotic systems. This study shows that, remarkably, ESNs can successfully predict
dynamical behavior that is qualitatively different from any behavior contained in their training set. Evidence is
provided for a fluid dynamics problem where the flow can transition between laminar (ordered) and turbulent
(seemingly disordered) regimes. Despite being trained on the turbulent regime only, ESNs are found to predict
the existence of laminar behavior. Moreover, the statistics of turbulent-to-laminar and laminar-to-turbulent
transitions are also predicted successfully. The utility of ESNs in acting as early-warning generators for transition
is discussed. These results are expected to be widely applicable to data-driven modeling of temporal behavior in
a range of physical, climate, biological, ecological, and finance models characterized by the presence of tipping
points and sudden transitions between several competing states.
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I. INTRODUCTION

Neural networks are important examples of machine learn-
ing techniques that have exhibited tremendous promise in
the fields of image recognition, computer vision and speech
recognition. Their utility stems from their ability to predict
known behavior in new situations but how well they can
extend this ability beyond their training set remains an open
question [1]. An important aspect of this is related to the pre-
diction of previously unseen temporal behavior. This becomes
particularly interesting to explore given that neural networks
have recently been introduced to assist physical modeling and
to time-dependent partial differential equations [2], where the
aim is to predict future dynamics without having to solve a
computationally expensive set of equations.

Forecasting in dynamical systems is often achieved using a
particular class of neural networks known as recurrent neural
networks (RNNs) [3]. These are characterised by the presence
of feedback connections within the network to allow it to
“remember” the history of the dynamical system and to use
it to improve the accuracy of its predictions. Among the many
different RNN architectures, we focus on echo state networks
(ESNs) [4,5] owing to their relatively low training cost; com-
pared with most other RNNs, only one part of the network
is trained while the rest is randomly generated and remains
fixed [6]. Echo state networks distinguished themselves by
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making sound short-term (over typically less than 10 natural
periods of the system) and long-term predictions in various
low-dimensional chaotic models [4,7–9], in the Kuramoto-
Sivashinsky equation (which is a partial differential equation)
[7,10,11] and in two-dimensional Rayleigh-Bénard convec-
tion [12,13]. Trained using a single time series, ESNs can
successfully approximate the statistical and geometric prop-
erties of chaotic attractors of a dynamical system [7,14,15]
and make short-term predictions with the level of accuracy
of state-of-the-art techniques for time-series prediction while
significantly outperforming them in terms of memory and
CPU usage [6,15].

In this paper, we use ESNs to predict sudden transitions in
fluids where a laminar (ordered) flow can undergo an insta-
bility and become turbulent (seemingly disordered) and vice
versa [16]. Systems exhibiting qualitatively similar, bistable
regimes are ubiquitous in both natural and engineering appli-
cations. Examples include the transport of liquid and gases
through pipelines, bioreactors in biochemical engineering,
wind turbines and airfoils, as well as climate [17], ecological
[18], Earth’s magnetic field and geodynamo models [19,20].
Such transitions are often associated with a change in energy
consumption or extreme damage which makes their prediction
and, crucially, their control important tasks. We demon-
strate that a properly trained ESN is capable of predicting
the statistics of both laminar-to-turbulent and turbulent-to-
laminar transitions even if it has been trained using a time
series containing only turbulent dynamics, i.e., it is able to
infer laminar dynamics despite not having seen it during
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FIG. 1. (a) Schematic of an echo state network. To make a prediction ũ(t + �t ), the flow state u(t ) at the previous time step and reservoir
state r(t ) are passed to the randomly generated reservoir (green box) where they are nonlinearly transformed to yield the prediction. (b) Training
time series for Reynolds numbers Re = 250, 275, 300, 500 obtained by time integration of the MFE model and shown in the form of the time
evolution of the flow kinetic energy. Only shadowed parts were used for training. (c) Flow prediction made by the echo state network trained
at Re = 300 (bright blue curve) and a representative turbulent trajectory of the MFE model computed at the same Reynolds number (light blue
curve).

training. As an example of a transitional flow, we consider
a paradigm model of plane Couette flow, i.e., the viscous flow
between two parallel walls moving in opposite directions at
constant and equal velocities. This model is a representative
of a wide class of nonlinear dynamical systems exhibiting
finite-amplitude instabilities and spontaneous decay of chaotic
dynamics. As such, we expect our conclusions to be transfer-
able to a variety of systems with similar dynamical features.

II. MODEL

In plane Couette flow, the velocity field at position x and
time t , u(x, t ), is generally solved for via the integration of
the Navier-Stokes equation together with the incompressibil-
ity condition, no-slip boundary conditions in the wall-normal
direction and spatial periodicity conditions in the streamwise
x and spanwise z directions. This set of equations can be
reduced to the Moehlis-Faisst-Eckhardt (MFE) model [21] by
replacing plane Couette flow with a sinusoidal shear flow,
known as the Waleffe flow [22,23], and truncating to nine
Fourier-based modes, u j (x), as listed in Appendix A. The
fluid velocity can reconstructed via

u(x, t ) =
9∑

j=1

a j (t )u j (x), (1)

where the time-dependent amplitudes are a(t ) =
[a1(t ), . . . , a9(t )]. The nine-dimensional ordinary differential
equation system of coupled amplitude equations obtained
by projecting the Waleffe flow equations onto these

modes reads

d

dt
a j = δ1 j

π2

4Re
+ α j (Re)a j +

9∑
k=1

9∑
l=1

β jkl (Re)akal , (2)

where Re is the Reynolds number, δi j is the Kronecker delta
acting on indices i and j, and α j (Re) and β jkl (Re) are Re-
dependent coefficients whose full expressions are given in
Appendix A. The Reynolds number is the only nondimen-
sional physical parameter in this system. It is a measure of
the ratio between inertial and viscous forces. To obtain nu-
merical solutions of this model, we time integrate Eq. (2)
using the fourth-order Runge-Kutta scheme with time step
�tT I = 10−3.

The only known stable solution of (2) is the steady lami-
nar flow: alam = [1, 0, . . . , 0]T , which is equivalent to ulam =√

2 sin(πy/2)ex in physical space; here ex is the unit vector in
the x direction. Despite the linear stability of the laminar flow,
we can observe long-lived turbulence for Re � 150 [21]. Ex-
amples of turbulent flows at different values of the Reynolds
numbers are shown in Fig. 1(b) through time series of the
kinetic energy:

E = 1

2
||u||22 = �x�z

9∑
j=1

a2
j , (3)

where �x = 1.75π (resp. �z = 1.2π ) is the imposed solution
wavelength in the x (resp. z) direction. All our simula-
tions display chaotic dynamics over thousands of time units
but eventually relax to the laminar flow, which is expected
to be the global attractor at least for Re � 335 [24]. This
phenomenon, called hereafter turbulent-to-laminar transition,
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is a prominent feature of transitional shear flows [16]. The
opposite process of laminar-to-turbulent transition is equally
important both from a theoretical and a practical viewpoint.
In this study, we show that statistical features associated with
both laminar-to-turbulent and turbulent-to-laminar transitions
can be successfully predicted by an ESN trained solely on
a transient segment of a turbulent trajectory, i.e., with no
experience of laminarization.

III. METHOD

Echo state networks (ESNs) belong to a class of artificial
recurrent neural networks (RNNs) that is characterized by the
presence of internal feedback connections in their architecture
allowing the network to have its own “memory” and, thereby,
generate time series with a greater accuracy compared with
its nonrecurrent companions. Figure 1(a) shows a schematic
representation of a typical RNN architecture that takes the
flow state a(t ) ∈ RNa at time t as an input, where Na = 9 for
the MFE model, and outputs the prediction of the flow state
at time t + �t , ã(t + �t ), where we used �t = 1 throughout
this study. It should be noted that, in our case, the training data
and the ESN prediction time steps are significantly larger than
the time-integration time step �t � �tT I = 10−3. In addition
to the input flow state, the RNN uses its own internal state
r(t ) ∈ RNr , which is also updated. In the context of ESNs, r(t )
is called the reservoir state. The ESN prediction is done in two
stages. First, the reservoir state r(t ) and the input flow state
a(t ) are nonlinearly transformed to get the reservoir state at
time t + �t :

r(t + �t ) = tanh [b + W r(t ) + W ina(t )] + ξZ, (4)

where W and W in are fixed Nr × Nr and Nr × Na weight ma-
trices, b is a fixed Nr-dimensional bias vector, Z is a random
vector uniformly distributed between −0.5 and 0.5 and ξ is
a hyperparameter controlling the amplitude of the additive
noise. Second, the reservoir state is mapped back into the flow
space via the linear transformation:

ã(t + �t ) = W out

[
r(t + �t )

1

]
, (5)

where W out is an Na × (Nr + 1) weight matrix. The result,
ã(t + �t ), is called the prediction. The network is trained so
that the prediction approximates the true flow state a(t + �t )
as accurately as possible. Note that the addition of the unit
component in the right-hand-side vector of Eq. (5) is intended
to create a bias and improve the performance of the ESN.

The characteristics that distinguish ESNs from the vast ma-
jority of other RNN architectures are that the weight matrices
W and W in and the bias term b are initialized randomly and
remain fixed, i.e., they are not trained, and that the weight
matrices are often chosen to be sparse, resulting in a sparsely
connected network (see Appendix B for details). This greatly
simplifies the training process, which becomes equivalent to
solving the linear regression problem:

min
W out

Nt∑
k=1

||W outr(k�t ) − a(k�t )||22, (6)

where it is assumed that the training dataset is com-
posed of Nt + 1 flow states a(t ) known at times t =
0,�t, 2�t, . . . , Nt�t . The flow state at t = 0 is used as an
initial condition only to compute the first prediction ã(�t ).
This minimization problem possesses a closed-form solution
given by the normal equation:

W T
out = (RT R)−1RT A, (7)

where matrix R ∈ RNt ×(Nr+1) is made of vectors
r(�t ), r(2�t ), . . . , r(Nt�t ) and an all-ones vector and
A ∈ RNt ×Na is made of vectors a(�t ), a(2�t ), . . . , a(Nt�t ).
We wish to emphasize two modifications which differentiate
our ESN architecture from more standard alternatives found
in the literature. The first one is the presence of a random bias
term b in Eq. (4), which significantly improves the accuracy
of predictions in our case. The second one is the presence
of additive noise in the same equation which is introduced
to regularize the regression problem and, at the same time,
improve the stability of our ESN [5].

The aforementioned architecture involves several hyperpa-
rameters: the reservoir state dimension Nr , the spectral radius
ρ(W ) of matrix W , its sparsity s, and the noise amplitude ξ .
Though we did not perform an exhaustive search of optimal
hyperparameter values, several points need to be highlighted.
The success of ESNs relies on a high-dimensional reservoir
space whose dimension Nr is expected to be much higher
than that of the flow state. Consequently, we chose Nr =
1500. We also fixed the noise amplitude ξ = 10−3 and the
spectral radius ρ(W ) = 0.5, values that allowed us to min-
imize the expression (B3). Surprisingly, we found a weak
dependence of the quality of prediction on s and used s =
0.5 for Re = 250 and s = 0.9 for other Reynolds numbers.
See Appendix B for further details of the hyperparameter
search.

To make predictions of the flow state, we simply replace a
in (4) with ã, which is equivalent to activating one more feed-
back connection [gray dotted line in Fig. 1(a)]. This makes
(4) and (5) a closed system of recurrent equations which
only requires initial conditions ã(0) and r(0). Since the ini-
tial reservoir state r(0) is not known in advance, we must
determine it through a process termed synchronization. We
take a small number of states from the recent flow history,
a(−9�t ), a(−8�t ), . . . , a(−�t ), and subsequently generate
reservoir states r(−8�t ), r(−7�t ), . . . , r(0) using Eq. (4) and
a trivial initial condition: r(−9�t ) = 0. At the end of this
synchronization process, we obtain the required initial reser-
voir state r(0) to predict the flow dynamics following the
procedure described above.

IV. RESULTS

Here we provide evidence that ESNs are able to predict
laminar dynamics without having observed it before. We first
generate transient turbulent trajectories by time integrating
random initial conditions using a fourth-order Runge-Kutta
scheme applied to (2) with time step 10−3. One such trajectory
is generated for each of the following Reynolds numbers:
Re = 250, 275, 300, and 500 [see Fig. 1(b)]. As these sim-
ulations eventually relax to the laminar flow (E ≈ 20.7), we
selected the training set to comprise only turbulent dynamics,
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as shown by the shaded regions in Fig. 1(b). For each of these
training sets, we trained one ESN, which we then identify
using their Reynolds number. For ease of reference, we call
truth the results produced by the MFE model and prediction
those computed by the ESN.

Each of the trained ESNs is able to generate turbulent
trajectories whose statistical properties are similar to those
of the original model. This fact has already been established
in [9], where ESNs were used to predict statistical proper-
ties and extreme events associated with the dynamics of the
MFE model. In this paper, we show that ESNs are able to
perform the more difficult task of predicting laminarization,
i.e., the decay process of a turbulent trajectory towards a
laminar state, despite having been solely trained on turbu-
lent trajectories. One such prediction is shown in Fig. 1(c)
as an example. At t ≈ 5000, the predicted flow (dark blue
curve) terminates its low-energy chaotic oscillations to re-
lax to a higher energy behavior with only weak temporal
variations attributed to the presence of small-amplitude noise
in Eq. (4). This is similar to the true laminar state, located
at E ≈ 20.7.

Despite the difference between the true and the predicted
laminar flow, it is particularly noteworthy that the ESN is
able to predict laminarization, a transition to which was not
exposed during training. We obtained a similar prediction,
but without temporal oscillations, if we turned off the noise
in Eq. (4) while proceeding to the prediction step. However,
we found that the presence of noise leads to better prediction
of the transition statistics, so we kept using noise throughout
this study. It is also important to emphasize that the transition
occurring in our prediction at t ≈ 5000 is different from the
“amplitude death” phenomenon, i.e., a sudden collapse of
oscillatory or chaotic dynamics caused by a parameter shift,
since our main parameter Re is not changed dynamically. The
amplitude death phenomenon has recently been shown to be
well replicated by ESNs [25].

As we shall see in the next sections, ESNs are capable
of more surprising predictions. First, we demonstrate their
ability to learn turbulent-to-laminar transition by showing
that ESNs can successfully recover the distribution of life-
times of turbulent trajectories [26]. Additionally, we provide
evidence of their ability to make short-term probabilistic
predictions of transitional events. This paves the way for
their use as generators of early-warning signals of criti-
cal transitions [27]. Finally, we examine the opposite kind
of transition, laminar-to-turbulent transition, and show that
ESNs can be used to approximate the transition probabil-
ity, one of the key statistics associated with this type of
instability [28].

A. Turbulent-to-laminar transition

Turbulent-to-laminar transitions are often characterized
using statistical tools similar to the survival function
S(t ) = P(T � t ), which represents the probability that tur-
bulent behavior remains observed for a duration t or,
equivalently, that the time T at which the laminarization
event eventually takes place is larger than t [16,21,26].
Within the context of the MFE model, for Re � 300, this

FIG. 2. Lifetime distributions for Reynolds numbers from Re =
200 to Re = 350 shown in the form of survival functions. Dark
(resp. light) colors correspond to the distributions generated by echo
state networks (resp. MFE model). At Re = 275, the ESN result was
constructed based on a distribution of survival functions computed
for 100 ESNs: the squares and the dashed curve denote the median
values, and the shaded area denotes the 80% confidence band.

distribution takes the form [21]:

S(t ; Re) = exp

[
t − t0
τ (Re)

]
, (8)

where t0 is the time taken for the initial condition to approach
the turbulent saddle and 1/τ (Re) is the Re-dependent escape
rate. To build the lifetime distribution for the original MFE
model at a fixed value of the Reynolds number, we time-
integrate 200 random initial conditions generated by drawing
initial amplitudes a j (0) from the uniform distribution with
support [−1; 1] such that the kinetic energy of any initial
condition is equal to E = 0.3�x�z, as described in [21]. The
lifetime T is measured for each of these initial conditions in
the following way: we assume that a laminarization event has
taken place and, thus, record T if the total kinetic energy of
the flow E > 15 from time T − 1000 to time T .

This procedure is used for Re = 200, 250, 275, 300, 350
and the resulting survival functions are shown in Fig. 2 (light
colors). For Re = 350 and beyond, the lifetime distribution
does not follow law (8), as was already observed in [21], so
we did not investigate such values of the Reynolds number.
To provide matching ESN predictions, we used the same
initial conditions, augmented by the first nine time steps of
the associated time-integration that we use for synchroniza-
tion. The resulting predictions are shown by the dark color
curves in Fig. 2. We did not obtain results for Re = 200
owing to the fact that laminarization occurs too soon to
generate a sufficiently long laminarization-free time series
for training. To demonstrate the level of sensitivity of our
results to the randomness inherent to the ESN generation
process, we additionally computed an empirical distribution
of survival functions at Re = 275 by sampling 100 ESNs and
building a survival function for each of them. The median
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TABLE I. Maximum likelihood estimates of parameters t0 and τ (Re) of the exponential distribution (8) approximating lifetime distributions
computed for both the MFE model and ESNs.

t0 τ (Re)

Re Truth Prediction Truth Prediction Relative error in τ (Re)

250 845 1207 835 734 0.121
275 956 1222 1202 1249 0.169
300 1086 1248 2161 2089 0.033

and 80% confidence band of the empirical distribution are
shown in Fig. 2 with green squares and green shadowed area,
respectively.

The ESN predictions are excellent: they preserve the main
qualitative feature of the true distributions, their exponential
structure, implying that the memoryless nature of the lami-
narization process has been adequately learned. Furthermore,
the escape rate of these survival laws, 1/τ (Re), is also well
predicted as one can observe in Table I. This is a surprising
result given that our ESNs had not seen any laminarization
event during training. Moreover, the ESN predictions are
fairly robust to random choices of reservoirs which can be
concluded from the small spread of the empirical distribution
at Re = 275 and the median overlapping the true survival
function. A relatively large spread of the empirical distribution
for S(t ) � 4 × 10−1 does not change this conclusion since it
is mainly explained by the increasing statistical uncertainty
inevitably taking place when estimating the distribution tail
with modest-size samples.

Interestingly, ESNs have recently been shown to suc-
cessfully replicate a similar type of distributions which
statistically describe random transitions between laminar and
chaotic states in the Navier-Stokes equation [29]. However,
in contrast to our work, time series used for training there
contained a relatively small number of transitions.

B. Early warning of turbulent-to-laminar transition

Lifetime distributions, such as those considered above, are
used to predict statistics about the long-term behavior of the
system. In many cases, however, it is a short-term prediction
that is of interest, like that of critical transitions in, for ex-
ample, climate [30,31], geophysical [32], ecological [33], and
many other complex nonlinear systems [27,34].

In the transitional flow problem considered here, we may
want to determine whether a given turbulent flow will laminar-
ize within a relatively short time window, e.g., T = 2000. In
the case of a deterministic system, such as the MFE model,
it is sufficient to time integrate a given initial condition to
learn whether the laminarization event occurs. Our ESN, in
contrast, is a stochastic model by design owing to the presence
of the noise term in (4) and, thus, does not need any alteration
or the creation of any additional perturbation to assess the
probability of turbulent-to-laminar transition within a given
time window. To compute this probability, we perform ensem-
ble predictions, where each prediction within the ensemble
starts from the same initial condition but, due to the noise,
evolves differently from other predictions. The probability of

turbulent-to-laminar transition is then computed as the frac-
tion of these predictions leading to laminarization.

We start by exploring the average level of “leakiness” of
the turbulent saddle generated by the ESN at Re = 500, i.e.,
the average probability that a typical turbulent flow suddenly
laminarizes given a short sequence of its previous states. This
value will act as a reference for future predictions. To make
such a measurement using the ESN, we pick N = 100 random
states a(t j ), j = 1, . . . , N , from a time series, which was not
previously used. We make ensemble predictions for each of
these random states after synchronizing the ESN using the
previous nine time steps a(t j − 9�t ), a(t j − 8�t ), . . . , a(t j ).
For each ensemble member, we predict the next 2000 time
units using the ESN. Each of the predictions is then classi-
fied as either exhibiting turbulent-to-laminar transition or not.
The probability of turbulent-to-laminar transition, denoted
as PT→L(t j ), is then estimated as a fraction of laminarizing
trajectories. The average probability of turbulent-to-laminar
transition, which we will refer to as the reference proba-
bility Pref, is obtained by averaging PT→L(t j ) with respect
to t j : Pref ≈ 0.11. We can then generate an early warning
of turbulent-to-laminar transition whenever the probability
PT→L(t ) takes significantly larger values than Pref.

We demonstrate that ESNs are able to act as generators of
early warning signals by making probabilistic predictions of
the Re = 500 transition shown in Fig. 1(b), starting approx-
imately at t ≈ 14 000. To that aim, we use the part of the
time series preceding the transition but not included in the
training set (small unshaded part in the figure). We expect that
the probabilities of turbulent-to-laminar transition PT→L(t )
estimated by the ESN become higher as t approaches the tran-
sition point. To verify this, we pick five initial states at times
t j = 13 840 + 100( j − 1), where j = 1, . . . , 5, and compute
the corresponding probabilities of turbulent-to-laminar tran-
sition PT→L(t j ) using the ESN trained at Re = 500 and N =
100 ensemble members for each initial state. As required by
the synchronization procedure, we also use nine flow states
prior to each given initial state. The probability of turbulent-
to-laminar transition is then computed using exactly the same
ensemble-based algorithm as we used to compute the ref-
erence probability Pref. The resulting probabilities together
with a small selection of predictions generated by ensemble
members are shown in Fig. 3. These results are in line with
our expectations. The initial probability prediction is 0.13 at
t1 = 13 840 (top panel in Fig. 3), a value comparable to the
reference value Pref ≈ 0.11 and thereby implying a low likeli-
hood of transition to the laminar state. At slightly later initial
time t2 = 13 940, the probability of turbulent-to-laminar tran-
sition jumps up to a significantly larger value, 0.38, which
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FIG. 3. Prediction of turbulent-to-laminar transition at Re = 500
based on the calculation of the probability of turbulent-to-laminar
transition PT→L which is estimated using an ensemble approach
for five initial states (red dots) at times t j = 13 840 + 100( j − 1),
where j = 1, . . . , 5. Every 10th ensemble member of the prediction
generated by the echo state network is plotted in bright blue. The
true flow trajectory obtained by time integration of the MFE model
is plotted in light blue.

can already be considered as an early warning. The predicted
probability keeps increasing as we get closer to the actual
transition, thereby confirming that this measure can indeed act
as an early warning.

C. Laminar-to-turbulent transition

The transition from turbulence to laminar flow does not
follow similar dynamical processes to its reciprocal laminar-
to-turbulent transition. While the former is a sudden escape
from a turbulent saddle (i.e., not an attractor), transition to
turbulence is a finite-amplitude instability: the laminar flow is
linearly stable, so a sufficiently large perturbation is necessary
to trigger transition to turbulence. In this section, we also show
that ESNs can be used to predict this transition.

To characterize the transition from laminar flow to
turbulence statistically, it is convenient to introduce the lami-
narization probability Plam(E ), which is the probability that a
random perturbation to the laminar flow decays as a function
of its kinetic energy E [28]. The laminarization probability
is related to the relative volume of the basin of attraction of
the laminar flow and, therefore, to the notion of basin stability
[18].

We compute the laminarization probability for 20 different
values of the kinetic energy of perturbations evenly spaced

FIG. 4. Laminarization probability as a function of the kinetic
energy of random perturbations plotted for the MFE model (light
blue curve) and the ensemble of 100 echo state networks (bright
blue curve denotes the median, light blue shadowed area denotes the
interdecile range) at Re = 500.

in the logarithmic scale: E1 = 10−4, . . . , E20 = 1. For each
energy level Ej , we generate 50 random perturbations by
drawing ak (0), k = 1, . . . , 9, from the uniform distribution
with support [−1; 1] and scale them such that the kinetic en-
ergy of perturbations is equal to Ej . We then time integrate the
MFE model starting from each of the generated perturbations
for 300 time units and record transition to turbulence if E
reaches values lower than 10 within this time window. The
laminarization probability Plam(Ej ) is then approximated as
the fraction of random perturbations which do not lead to tran-
sition to turbulence. We used the same procedure to estimate
the laminarization probability using the ESN trained on the
turbulent state, except that each perturbation is time advanced
for 10 time steps using the MFE model to provide sufficient
data for synchronization. To provide a statistical confirmation
of the ESN ability to learn the laminarization probability,
statistically, we estimated Plam(Ej ) for 100 randomly gen-
erated ESNs thereby generating an empirical distribution of
laminarization probability curves.

The resulting dependence of Plam(E ) on the perturbation
kinetic energy E for Re = 500 is shown in Fig. 4 for both
the truth and prediction. The laminarization probability of
the original model almost monotonically decreases with E . It
tends to 1 for small perturbation energies (the laminar flow
is linearly stable) and we found that Plam(E ) = 0 for E �
2 × 10−2, indicating that all the perturbations beyond this
energy trigger transition to turbulence. The ESN prediction
exhibits the same trend and compares qualitatively well with
the truth, showing that ESNs are also capable of learning the
statistical boundaries of the basin of attraction of the laminar
flow. It is, in fact, remarkable that the ESN can successfully
estimate the threshold for laminar-to-turbulent transition de-
spite having only been trained on fully turbulent time series.
Despite these qualitatively striking predictions, the ESN does
somewhat overestimate the laminarization probability for
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intermediate perturbation energies, thereby overestimating the
nonlinear stability of the laminar flow. This is likely related
to the fact that the ESN generates the laminar state in the
presence of O(10−3) noise making it more stable to pertur-
bations of very small amplitudes. As a result, we observe
a systematically increased laminarization probability in the
interval 5 × 10−3 � E � 10−2 in Fig. 4.

V. DISCUSSION

In this work, we have shown that echo state networks, a
class of recurrent neural networks, are able to capture dynam-
ical behavior qualitatively different from anything included in
their training data set. We demonstrated this on the Moehlis-
Faisst-Eckhardt (MFE) model, a classical example of fluid
dynamics where the flow can display two distinct types of
behavior, laminar flow and turbulence. In this problem, the
transition from laminar flow to turbulence is a finite-amplitude
instability, while the reverse transition is a spontaneous escape
from a chaotic saddle. We computed predictions of these
transitions using echo state networks trained solely on turbu-
lent dynamics and compared them to the “truth,” which we
determined by directly time integrating the MFE model.

Remarkably, our echo state networks were able to learn
laminar dynamics despite not having seen it during training.
In addition, they were capable of successfully reproducing the
statistical properties of both types of transition. Finally, we
demonstrated that echo state networks can successfully act as
generators of early warning signals of transition by tracking
the predicted probability of turbulent-to-laminar transition in
time. In our study, each echo state network was trained at a
specific value of Re separately from other echo state networks.
However, we believe that transfer learning already adapted
for echo state networks [35] can be used to train only one
echo state network using a long training time series and then
adjust it to a new value of Re based on a small-size time series.
Similarly, transfer learning could help improve the prediction
accuracy by adding a small sample of laminar dynamics to the
training set.

This success may be related to the echo state network
approximation theorem recently proved for a one-dimensional
observable of the true dynamical system and in the absence of
noise [36]. It states that, under some mild conditions, for a
sufficiently large reservoir and structurally stable true dynam-
ical system, there exists such a matrix W out that the dynamical
system defined by the resulting echo state network is topo-
logically conjugate to the true dynamical system. A crucial
consequence of this theorem is that an echo state network is
also expected to embed attractors of the true system. However,
this theorem does not provide us with particular rules for
building the matrices W , W in and W out guaranteeing that a
given attractor will be embedded into the manifold generated
by an echo state network. We found that the training time
series plays a crucial role in this process. In particular, echo
state networks failed to learn the precise laminar dynamics
and, as a consequence, were not able to produce any transi-
tions, when the training time series did not include at least
one large-amplitude excursion pulling the flow relatively close
to the laminar state. This fact is illustrated in Fig. 5, where
we show predictions made by echo state networks trained

FIG. 5. Predictions made by echo state networks (right) each of
which was trained using the corresponding shadowed part of the time
series shown on the left. Trajectories of different colors on the right
were obtained using random initial conditions.

on four time series. The first one (top plots) does not cover
the large excursion at t ≈ 3500 whatsoever and results in an
echo state network that is unable to predict laminar dynamics
and turbulent-to-laminar transition. The second one covers
only a small piece of this excursion which is enough for the
echo state network to reproduce laminar dynamics, but not
its stability. Finally, the third and fourth time series cover a
sufficient part of the excursion in order for echo state networks
to generate stable laminar flows. To predict new dynamics,
echo state networks therefore require training time series that
include some indication that the turbulent dynamics may not
be ubiquitously stable.

Our results provide strong evidence that echo state net-
works can be used for data-driven discovery of new dynamical
regimes, early warning of transitions between different dy-
namical modes and prediction of reversals from transitions.
While these results were obtained for a low-dimensional tur-
bulence model, they could be extended to higher-dimensional
systems given that echo state networks have already been
shown to successfully replicate the Kuramoto-Sivashinsky
equation and 2D turbulence [7,10–13] where echo state net-
works can be complemented by autoencoders for the sake of
dimensionality reduction [37]. We believe that our findings
have a potential to be useful in a range of applications in-
volving complex nonlinear systems characterized by abrupt
transitions between dynamical regimes [27,30–34].
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APPENDIX A: MOEHLIS-FAISST-ECKHARDT MODEL

The Moehlis-Faisst-Eckhardt model is an extension of
Waleffe’s eight-dimensional model which is believed to cap-
ture many features of shear flow turbulence including transient

chaos [21]. In this model, a computational domain 
 =
[0; �x] × [−1; 1] × [0; �z], periodic in the x and z directions,
is assumed. The velocity field is represented by the following
decomposition:

u(x, t ) =
9∑

j=1

a j (t )u j (x), (A1)

where the modes u j (x) are defined as follows:

u1 =

⎡
⎢⎣

√
2 sin(πy/2)

0
0

⎤
⎥⎦, u2 =

⎡
⎣ 4√

3
cos2(πy/2) cos(γ z)

0
0

⎤
⎦,

u3 = 2√
4γ 2 + π2

⎡
⎢⎣

0

2γ cos(πy/2) cos(γ z)

π sin(πy/2) sin(γ z)

⎤
⎥⎦, u4 =

⎡
⎣ 0

0
4√
3

cos(αx) cos2(πy/2)

⎤
⎦,

u5 =
⎡
⎣ 0

0
2 sin(αx) sin(πy/2)

⎤
⎦, u6 = 4

√
2√

3(α2 + γ 2)

⎡
⎣−γ cos(αx) cos2(πy/2) sin(γ z)

0
α sin(αx) cos2(πy/2) cos(γ z)

⎤
⎦,

u7 = 2
√

2√
α2 + γ 2

⎡
⎣γ sin(αx) sin(πy/2) sin(γ z)

0
α cos(αx) sin(πy/2) cos(γ z)

⎤
⎦, u8 = N8

⎡
⎢⎣

πα sin(αx) sin(πy/2) sin(γ z)

2(α2 + γ 2) cos(αx) cos(πy/2) sin(γ z)

−πγ cos(αx) sin(πy/2) cos(γ z)

⎤
⎥⎦,

u9 =
⎡
⎣

√
2 sin(3πy/2)

0
0

⎤
⎦.

The model itself is defined by a system of nine ordinary differential equations:

da1

dt
= β2

Re
− β2

Re
a1 −

√
3

2

βγ

kαβγ

a6a8 +
√

3

2

βγ

kβγ

a2a3,

da2

dt
= −

(
4β2

3
+ γ 2

)
a2

Re
+ 5

√
2

3
√

3

γ 2

kαγ

a4a6 − γ 2

√
6kαγ

a5a7 − αβγ√
6kαγ kαβγ

a5a8 −
√

3

2

βγ

kβγ

a1a3 −
√

3

2

βγ

kβγ

a3a9,

da3

dt
= −β2 + γ 2

Re
a3 + 2√

6

αβγ

kαγ kβγ

(a4a7 + a5a6) + β2(3α2 + γ 2) − 3γ 2(α2 + γ 2)√
6kαγ kβγ kαβγ

a4a8,

da4

dt
= −3α2 + 4β2

3Re
a4 − α√

6
a1a5 − 10

3
√

6

α2

kαγ

a2a6 −
√

3

2

αβγ

kαγ kβγ

a3a7 −
√

3

2

α2β2

kαγ kβγ kαβγ

a3a8 − α√
6

a5a9,

da5

dt
= −α2 + β2

Re
a5 + α√

6
a1a4 + α2

√
6kαγ

a2a7 − αβγ√
6kαγ kαβγ

a2a8 + α√
6

a4a9 + 2√
6

αβγ

kαγ kβγ

a3a6,

da6

dt
= −3α2+4β2+3γ 2

3Re
a6 + α√

6
a1a7 +

√
3

2

βγ

kαβγ

a1a8 + 10

3
√

6

α2 − γ 2

kαγ

a2a4 − 2

√
2

3

αβγ

kαγ kβγ

a3a5 + α√
6

a7a9 +
√

3

2

βγ

kαβγ

a8a9,

da7

dt
= −α2 + β2 + γ 2

Re
a7 − α√

6
(a1a6 + a6a9) + 1√

6

γ 2 − α2

kαγ

a2a5 + 1√
6

αβγ

kαγ kβγ

a3a4,

da8

dt
= −α2 + β2 + γ 2

Re
a8 + 2√

6

αβγ

kαγ kαβγ

a2a5 + γ 2(3α2 − β2 + 3γ 2)√
6kαγ kβγ kαβγ

a3a4,

da9

dt
= −9β2

Re
a9 +

√
3

2

βγ

kβγ

a2a3 −
√

3

2

βγ

kαβγ

a6a8,
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FIG. 6. An example of turbulent trajectory used for finding an optimal combination of hyperparameter values. Short-term predictions are
made within each colored block.

where Re is the Reynolds number and the remaining coeffi-
cients are defined as follows:

α = 2π/�x, β = π/2, γ = 2π/�z,

N8 = 2
√

2√
(α2 + γ 2)(4α2 + 4γ 2 + π2)

,

kαγ =
√

α2 + γ 2, kβγ =
√

β2 + γ 2,

kαβγ =
√

α2 + β2 + γ 2.

In this study, we consider fixed wavelengths values �x =
1.75π and �z = 1.2π corresponding to the minimal flow unit
in plane Couette flow allowing for sustained turbulence [38].

APPENDIX B: ECHO STATE NETWORK GENERATION
AND TRAINING

The echo state network (ESN) architecture we use in this
work can be fully described by a two-equation system:

r(t + �t ) = tanh [b + W r(t ) + W ina(t )] + ξZ, (B1)

ã(t + �t ) = W out

[
r(t + �t )

1

]
, (B2)

where ã(t + �t ) ∈ RNa is the prediction of the flow state at
time t + �t based on its state a(t ) ∈ RNa at time t and the
reservoir state r(t ) ∈ RNr . The key feature of ESNs mak-
ing them different from many other examples of recurrent
neural networks is that the matrices W , W in and vector b
are generated randomly. Moreover, the weight matrices are
often assumed to be sparse which is akin to using pruning,
a technique successfully employed in neural networks [39].
This allows us to avoid complicated and computationally de-
manding backpropagation-based algorithms for training and
formulate training as a linear-regression problem while keep-
ing a high accuracy of the final prediction.

Matrix W ∈ RNr×Nr is generated in three steps. First, we
generate a random matrix ˜W by drawing all its coefficients
from uniform distribution with support (−0.5; 0.5). Second,
we impose required sparsity s by setting to zero sN2

r ran-
domly chosen matrix elements. Finally, we rescale matrix ˜W
to ensure that the resulting matrix W has a prescribed spectral

radius ρ = ρ(W ):

W = ˜W
ρ

ρ(˜W )
.

Matrix W in ∈ RNr×Nu and vector b ∈ RNr are generated
by drawing their elements from uniform distribution
with support (−1; 1) without imposing any constraints
on sparsity.

The least-squares optimization problem is then formulated
to minimize the sum of squares of deviations of one-step
predictions with respect to matrix W out:

min
W out

Nt∑
k=1

||W outr(k�t ) − a(k�t )||22, (B3)

where we assume that Nt + 1 flow states a(t ) are known
at times t = 0,�t, 2�t, . . . , Nt�t and, thus, constitute our
training data set. The flow state at t = 0 is only needed to
compute the first prediction ã(�t ). Instead of directly solving
the normal equation, we find the solution by taking the Moore-
Penrose pseudoinverse R+ of matrix R:

W T
out = R+A, (B4)

where matrices R and A are defined as follows:

R =

⎡
⎢⎢⎣

r(�t ) 1
r(2�t ) 1

... 1
r(Nt�t ) 1

⎤
⎥⎥⎦, (B5)

A =

⎡
⎢⎢⎣

a(�t )
a(2�t )

...

a(Nt�t )

⎤
⎥⎥⎦. (B6)

The pseudoinverse is computed using the singular value de-
composition of R. We pursue this approach in our work owing
to the relative low dimensionality of our problem. It must be
emphasized however that for large-scale problems, one may
want to turn to semidirect or purely iterative methods for
solving the normal equation.

For each Re, we train a separate ESN. For training
purposes, we use a single turbulent trajectory without lami-
narization events. Our networks have four hyperparameters:
reservoir state dimension Nr , spectral radius ρ, sparsity s
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and noise strength ξ . To find an optimal combination of
hyperparameter values, we use another turbulent trajectory
simulated at the same Reynolds number and divide it into
a set of blocks of equal length t = 300 (see Fig. 6 for an
example). Then, short-term predictions are made by an ESN
within each block to estimate its performance as a residual
sum of squares. The optimal configuration is then found by
train 10 ESNs per combination of hyperparameter values,

ranking them according to their performance and selecting the
best one. To reduce the dimensionality of the hyperparameter
space, we fix Nr = 1500 and ξ = 10−3. As a result, values
ρ = 0.5 and s = 0.9 have been found to be optimal for all the
Reynolds numbers except for Re = 250 for which s = 0.5 has
been used. The number of blocks used for the hyperparame-
ter search depends on available turbulent trajectories and is
typically equal to 10.
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